```
Voting for voters : a model of electoral evolution
Author(s): Barberà, Salvador
Date 1998
Type Working Paper
Series Estudios = Working papers / Instituto Juan March de Estudios e Investigaciones,
    Centro de Estudios Avanzados en Ciencias Sociales 1998/115
City: Madrid
Publisher: Centro de Estudios Avanzados en Ciencias Sociales
```

Your use of the CEACS Repository indicates your acceptance of individual author and/or other copyright owners. Users may download and/or print one copy of any document(s) only for academic research and teaching purposes.

VOTING FOR VOTERS: A MODEL OF ELECTORAL EVOLUTION

Salvador Barberà
Estudio/Working Paper 1998/115
June 1998

Salvador Barberà is Professor of Economics at the Universidad Autónoma de Barcelona. This paper, co-authored with Professor M. Maschler of the Hebrew University of Jerusalem and Professor J. Shalev of the Université Catholique de Louvain, is based on a series of four public conferences that Professor Barberà gave at the Juan March Institute on 11, 13, 18 and 20 March 1997. The conferences were entitled, respectively, "Estrategia y elección social"; "La agregación de preferencias"; "Problemas dinámicos en teoría de la elección social"; and "Modelos formales de justicia distributiva".

Abstract

We model the decision problems faced by the members of societies whose new members are determined by vote. We adopt a number of simplifying assumptions: the founders and the candidates are fixed; the society operates for k periods and holds elections at the beginning of each period; one vote is sufficient for admission, and voters can support as many candidates as they wish; voters assess the value of the streams of agents with whom they share the society, while they belong to it. In spite of these simplifications, we show that interesting strategic behavior is implied by the dynamic structure of the problem: the vote for friends may be postponed, and it may be advantageous to vote for enemies. We discuss the existence of different types of equilibria in pure strategies and point out interesting equilibria in mixed strategies.

1. Introduction

Human societies evolve, grow and shrink, as the result of exit and entry. We are interested in the evolution of those societies where entry is regulated by the use of formal voting procedures: new members are admitted only if they receive enough support from inside, according to well specified rules.

Clubs and learned societies are examples of human groups that fit our description exactly. Others may only meet part of the features we require here. For example, parliaments are elected according to well specified rules, but their size is fixed, while our focus will be on the forces that determine the growth or the stagnation of groups. In other cases, entry and exit are the result of informal procedures, whose description as voting rules might be too simplistic even as an approximation. Our model, thus, only applies to a restricted set of societies.

Election rules are social constructs: they may come from an agreement among different founders, they may reflect the will of a unique founder or they may be the result of successive amendments, but they must be set purposely. Once the rules for election to a society are set, participants in the election are bound to engage in strategic considerations that involve non-myopic behavior. In particular, voters cannot overlook the fact that newly elected members will become voters in later elections: this may lead to postpone the election of individually attractive candidates who might vote in unattractive ways, or to accelerate the election of a poor candidate whose vote is needed. We are interested in the evolution of groups which results from considerations of this type being made by rational agents under well specified voting rules. The features we have emphasized should make it clear that electoral evolution is the result of nonmyopic behavior which is quite typical to human societies.

Since this paper is a first attempt at modeling such facts, we allow ourselves some strong simplifying assumptions. The founders and the rules of election of a society are fixed in advance (we don't explain why they join to create the society or why they agree on these rules). The candidates to enter the society are fixed as well (we don't explain why they don't try to create other societies, or any other process by which eligible candidates could change from election to election). We assume that nobody leaves the society once admitted (thus concentrating on entry and not on exit). We study finite horizon situations where members of the society know at all times when it will be dissolved and voting takes place at a finite number of periods (when in fact many societies operate under an uncertain horizon). We assume a specific voting method, whereby each member can vote for as many candidates as he wishes, and it is enough for a candidate to receive a vote in order to be admitted (this is the method of 'voting by quota one'; many others are worth considering). We postulate that agents' preferences are defined over streams of members in the society, and that they are additive across stages. Under these assumptions, we provide theorems on the existence and the characteristics of different types of equilibria of the games generated in such dynamic voting contexts. Although clearly restricted by our assumptions, these results bear witness to the abundance of possibilities within our model.

In addition to general theorems, we also provide many examples, some of which reflect quite unexpected phenomena. The simplicity of our model, when it comes to examples, becomes an asset: whatever counterintuitive results we exhibit are robust, since they happen even in simple situations. For instance, we shall prove that agents may want to vote for their enemies. This would not be surprising if they needed the votes of others in order to advance their friends to membership. But it is quite striking under our extreme assumption of vote by quota one, where each voter alone can assure his friends' admission! Also, many of our examples postulate a very simple structure of preferences: each voter is assumed to classify candidates as enemies or friends, and streams of elected members are valued as the sum of utilities derived from

-5-

elected friends - one unit per period - plus the sum of disutilities derived from having enemies elected essentially minus one per period. Revealing interesting strategic behavior under much simple preferences reinforces our points.

Our closest reference is "Voting by Committees", by Barberà, Sonnenschein and Zhou [1991], where the question of electing members for a society is treated as a one period problem. That paper characterizes the set of all strategy-proof mechanisms respecting the sovereignty of voters when their preferences over sets of candidates satisfy one of two alternative restrictions, called additivity or separability: they are the methods of voting by committees. We shall not describe the general class, but simply say that they contain an interesting subclass of methods, which in addition to the preceding properties will also respect anonymity and neutrality; i.e., will treat all voters and all candidates alike. This subclass consists of the methods based on voting by quota: each agent can vote for as many candidates as he wishes, and all candidates who get at least q votes are elected, where q is fixed a priori. Our main interest in the present paper is on phenomena that only arise when the society's horizon is greater than one period, and this is why we have chosen to work with multiperiod models whose one period version takes the form of voting by quota. Since these methods are strategy-proof in their one shot version, we can be sure that whatever strategic behavior arises when several periods are considered must have a dynamic source.

As already mentioned, our ambition is to study the evolution of societies who resort to voting as a means to include or to exclude members. It has both a normative and a positive viewpoint. Many interesting questions come to mind. Just to mention one topic on the descriptive side, we would like to understand why some societies maintain their defining features along their history, while others change so much that their own founders would not recognize them. However, our ambition must be tempered by the fact that the game theoretic analysis quickly becomes complex and presents several alternative routes. Accordingly, the

-6-

paper contains examples, which point at the complexities of the analysis, as well as technical results on how to solve for equilibria and what types of equilibria to look for. It is structured as follows. In Section 2 we present the model, based on a gallery of assumptions. Section 3 contains examples. These examples show that the simplicity of the one period model is immediately lost if we have several periods. They also prove that some counterintuitive phenomena, like strategic voting for enemies, can occur if the number of periods is not too small. They also indicate that it will be worth analyzing not one but several solution concepts, because each one of them can provide some insight on the phenomena we try to model. One example shows that, although we concentrate on pure-strategy equilibria, the use of mixed strategies, or even correlated strategies, may be most reasonable in some cases. In Section 4 we analyze subgame-perfect equilibria and 'quasi-strong equilibria', ${ }^{1}$ and we discuss the fact that the streams of members for a society can be attained in equilibrium, given the rules, through different distributions of the individual votes. In this section we also look for Pareto-undominated equilibria. Unfortunately, Pareto undominated equilibrium profiles are often not perfect equilibria. Thus, the members may wish to adopt less profitable outcomes in order to gain the stability that a perfect equilibrium yields. Section 5 is devoted to the existence of perfect equilibria in pure strategies: we provide a sufficient condition under which there will exist such equilibria, and examples showing that the condition is not necessary. We also show by examples that quite natural cases exist in which perfect equilibrium profiles can only be reached by using mixed strategies. In this paper agents are satisfied in employing only history-independent strategies (which we formally define in Section 2). The merit and the limitations of these strategies are discussed in the Appendix.

[^0]
2. The model

We want to analyze the results from imposing some electonal cules on the evolution of societies. The necessary elements to describe the cules, which we call (finile horizon) nating schemes, are the following:
(1) A nonemply set of originul fourders, denoled F^{0}, who belong to sociely at the initial stage. and from stage to stage vote to bring in oller membere and/or to remove members. "Socinty" may be an organization, a club, a fonndation or similar enterprises.
(2) A set of candidates from whom new members can be chosen. This population may wary from stage to stage.
(3) A set of woters for each stage. Often, all clected members can vote at all stages following their election for as long as they belong to the society,
(4) A set of rules which specify under what conditions a person is admitted to the society, or is expelled, or resigns.
(5) A number of stages k during which the society operates. After k stages the society dissolves, having concluded its tasks, and the play is over.

An important part of the outcome of the voling scheme is the resulting strean of memnters, denoted $\mathcal{F}:=\left\{F^{\mathrm{l}}, F^{2}, \ldots, F^{k}\right\}$, where F^{t} represents the membera at stage t, after the elentioms, expellings and resignations at that stage. Another part may be information concenning who voted at eacli stage and for whom. Some of the above may be unknown to some, or all the agents. All of the information that is svailable to agent i until stage t constitutes his $(t-1)$-slage listury.

The decision on how to vote at each atage, that every voter ifaces, should tale into consideration the prioritiee that each agent has oyer the various streams. ${ }^{2}$

[^1]As mentioned in the introduction, we make many simplifying assumptions in order to render the model simple and yet still capture some dynamic aspects of the workings of the voting scheme. In fact, we suppress many aspects in order not to 'blur' the purely dynamic issues. Obviously, other, more complicated and more realistic models should be studied. As we show, even the present simple model possesses enough intricacies to render the analysis interesting.

Some simplifying assumptions.

1. FIXED POPULATION. We assume that the population is finite and fixed and includes the nonempty set of the original founders F^{0}. Therefore, we can denote the set of agents by $N . N \backslash F^{0}$ is called the set of the original candidates and is denoted by C^{0}. Similarly, we write C^{t} for $N \backslash F^{t}$. Members of C^{t-1} are the candidates from whom the voters F^{t-1} can choose at stage t.
2. NO FIRING. We assume that an elected candidate will stay in the society all the time. There are no provisions to fire him. Later we shall add an assumption that guarantees that no agent will want to resign.
3. 1-QUOTA VOTING. The rule for electing a candidate into the society is simple: every voter can bring any number of candidates into the society at any stage, simply by casting a vote for them at the beginning of that stage. This rule is known as voting by quota 1 .
4. STREAMS OF MEMBERS ARE ALL THAT MATTER. We assume that each agent cares only about the streams of members in the society and does not care, for example, about who voted for each member. Thus, his priorities are functions of the streams F.
5. COMMON HISTORIES. We assume that at each stage the elected candidates are known to everyone. Thus, for every agent i the relevant $(t-1)$-stage histories are the same; ${ }^{3}$ namely,

[^2]subserquencen of ile streanse terminating at $F^{\text {t- }}$. These will be denoted $h^{t}, t=1,2, \ldots, k$.

We now have al the ingredients to convert the above setup into a game form: The set of players is N, the pure strategies amilable to player is are cholos of sents that sperify at each stage the candidates that be votes for at that stage as a function of the history at that stage,

Most of the time we shall reatrict ourselves to pure etrategies which are history-indopardert; namely, strateriss that depend only on the stage number ${ }^{4}$ and on the population of voters at that stage ${ }^{5}$ and neither on the precise sequence of wotcs that led to that stage, nor eyen on the gets of members that were elected in previous sacges. ${ }^{7}$

With this restrictian, we can denote a. pure stratiegy for agent i by $\sigma_{i}:=\left(\sigma_{i}^{1}, \sigma_{i}^{2}, \ldots, \sigma_{i}^{i}\right)$, where the stage strategy σ_{i}^{t} is a function from thr domain $\{1,2, \ldots, k\} \times 2^{N}$ into 2^{N}. Here, $\sigma_{i}^{t}\left(t, r^{i-1}\right)$ is interpreted as the set of votes that i casts at shage t when F^{f-1} is the curcent set of woters. ${ }^{8}$

Frotn this description one can realize that we formally allow a player at each stage to wote over for agents ithai were already elected (iacluding himself) and we allow an agent to wote even if he is not nected. This is done merely for mathematical convenience. Of course such voles will have no effect on the stream of members, Given a strategy profile $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, the stream of members is

[^3]given by
\[

$$
\begin{equation*}
F^{t}=F^{t}(\sigma)=F^{t-1} \cup\left(U_{i \in F^{t-1}} \sigma_{i}^{t}\left(t, F^{L-1}\right)\right), \quad t=1,2, \ldots, k . \tag{2.1}
\end{equation*}
$$

\]

Most of this paper will deal with pure strategies. Since the game in of perfect recall, by Kuhn's [195.3] theorelu (see dino Sclten [1975]), even when we do employ mixed klrategies we car restrict ourselves to behawioral strategies, in which case it is sufficient tu cousider the probability distribution on the varigus historipu.

To convert our game form into a game we now introduce priorilies and rtilitiess.
6. K'NOWN UTILITIEs, We axsulte that the priorifies of agent i are given by complete and transitive binary relacions on the set of streams and therefore they can be represented by a utility function $\boldsymbol{s}_{\text {; }}$. Later, when we deal with mixed stratcgics, we shall assume that these utalitits are, in fact, Von Neuraann Morgenstern utilities. ${ }^{\text {g }}$

The last asamption is not ueded for a great part of the papur. We assume that all utilitijes are kliown to every agent and, in fart, are common knowledge.

We want the utilitics to express the desire that each agent, above all, wishes to be in the society. We normalize his utility for staying alone in the society to be zeto. ${ }^{20}$

Accordingly: we statere:
7. Sthong preflrbice for participation. Normadization. Serving in the society is preferable than staying out in all circumstantes. Staying alone in the society has a zero utility:

[^4]Once an agent is in the society, every stream that is better for him than staying alone is assigned a positive utility. Every stream that is worse for him is assigned a negative utility (still larger than the utility of not being in the society).

We now present, several possible simplifying assumptions on the utilities, ranging from simple to more complicated considerations. Some of them will be employed in the examples of the next section, to illustrate some of the issues. Others will be needed for the proofs.

The simplest model in this paper assumes that for every pair of distinct agents i, j, either i likes j, or i dislikes j. Expressing it differently, we say that either j is a friend of i or he is an enemy of i, where friendship and enmity merely mean that he wants or does not want the person in the society. This does not imply that a voter will always vote for his friend. He may be reluctant to do so if, for example, he thinks that his friend may bring enemies to the society.

We do not assume that the "friendship" relation is either symmetric, or transitive: Agent j can be a friend of i, yet i is regarded as an enemy by j. Also, a friend of a friend need not be a friend.
'A friend' may be interpreted in several ways, such as: 'the voter enjoys his company', 'the voter thinks he will be useful for the workings of the society', 'that his opinion should be heard, because it is relevant', etc. Likewise 'an enemy' can have opposite interpretations.

We then assume that each agent wishes to spend as much time as possible with friends and as little time as possible with enemies and that this is all he cares for. If the stages are equally spaced in time, it then makes sense to denote by 1 the utility of having a friend in the committee for one stage and by $(-1-\epsilon)-$ the utility of having an enemy for one stage, where ϵ is a small positive number, added to break ties. ${ }^{11}$

[^5]If the votere are not sophisticated and only durations of time spent with 'friends' and 'umemiess' matter, it makes senae to choose additive utilities. We summarize the above formally:

8a. Pure friendshif and enmity. The utility for a stream of members, given by (2.1) for an agent who succeeds in entering the socicty is given by

$$
\begin{equation*}
u_{i}=\sum_{\left\{t \geq 1: i \in F^{\prime}\right\}}\left|F^{t} \cap \operatorname{fr}(i)\right|-(1+\epsilon) \sum_{\left\{t \geq 1: i \in F^{t}\right\}}\left|F^{t} \cap \tan (i)\right|, \tag{2.2}
\end{equation*}
$$

where $|S|$ denotes the cardinality of S, fr (i) denotes the set of frients of i and en (i) denotes the set of enemies of i. Here, $\mathrm{fr}(i) \cup \mathrm{Ca}(i)=N \backslash\{i\}$ for wach agent i.

In a more sophisticaved ntodel we can still assurne that whether or not to vote for a person is decided on purely personal grounds; namely, only on the merits of the person and not, e.g., on who is already in the society, but now we let agents also take intor consideration how muth they like/dislike each person.

Individual considerations may be quite complicated: a voter may like one person and dislike another. He may wanta person in the society, because he thinks that his views should be heard. He may want a. person in to balance an extreme stand of a founder, etc. Here we make the strong assumption that whatever these considerations are, they can be sumued up by each apent providing each individtal with a time-independent and society-ndeperdont "weight function", so that the sum of the weights reflecte the utiltty of the woter for ore shage.

Naturally the weights still allow us to distinguish between friende and enemies. Friends will be agents with positive weight and enemies - with negative weiglits. If the weight is zero, we can call him neutral to the voler.

Whef ro have a socicty with as few cunflicts as possible: it is worse to have a friend and an enemy for a ourtain poriod of time than to have nome of them for that period.

We couple the above assumplion with the idea that a voter wants to spend as much time as possible with frieruls and os little time as possible with enemies. Together, the above brings about the next simplifying assumption:

8b. Friends and enemies. Additivity within each stage and across stages. Ebery agent $;$ has a weight finction $w_{i}: N \rightarrow$ R. His utility $u_{i}(\mathcal{F})$ for a stream of members \mathcal{F} serving in the society is given by:

$$
\begin{equation*}
w_{s}(\mathcal{F})=\sum_{\left\{\left\{\geq 1: i \in \mathcal{F}^{\prime}\right\}\right.} \sum_{a \in F^{t}} w_{i}(a) . \tag{2.3}
\end{equation*}
$$

Thus, $w_{i}(\alpha)$ can be interpreted as the utility that i accumulates from spending one stage in the society together with a.

How a weight function the is determined in real life is hard to tell. Presumably it reflects player i's opinion on the importance that the agent belongs to the sociely, As indicaled previously, a friend may carry a high weight and yet not be invited to foin.

On a higher level of sophistication we consider a model in which not only individuals but also groups matter. 'Thus, we now assume only that agenta have priotitics over the various groups that may compose the society and these priorities need not be sums of weights for induidual members. We still assume additivity across atages. Formally:

Sc. Apditivity across stages. Each member \dot{f} has a utility fuption $u_{i}:\{1,2, \ldots, k\} \times \dot{Z}^{N} \rightarrow$ f, that may depert on ℓ, so what his utiilty for a stream ${ }^{\text {r2 }} \mathcal{F}=\left\{F_{1}, F_{2}, \ldots F_{k}\right\}$ is

$$
\begin{equation*}
u_{i}(\mathcal{F})=\sum_{\left\{t \geq 1: i \in P^{+t}\right\}} u_{i}\left(t_{1} F^{t}\right) . \tag{2.4}
\end{equation*}
$$

[^6]Again, additivity across stages makes sense if the stages are equally spaced in time. Note that now we no longer assume 'time independence': We allow that the same set of members adds a different utility per stage to a player if it appears at a different stage. This may be the case, e.g., if some of the agents are experts, whose services are important only at a late stage in the life of the society.

To complete the descriptions above we make a last assumption:

9. COMMON KNOWLEDGE. All utilities as well as all the descriptions above are common knowledge.

Who are the players? We have set up the society protocol and we have converted it into a game. Clearly, the way we formulated it, the set of players is N. Yet, we can regard the situation as a sequence of several games, one starting at each stage, with different players, where the players at each stage t are the set of voters F^{t-1} and the other agents are considered extraneous entities. Indeed, agents do not really become players until they enter the society. The only votes that count are those of agents who are members by that stage. They create the continuation and it is their interest that matters. ${ }^{13}$ Thus, if we want to talk about refinements of equilibria, we sometimes prefer to make them relative to the set of voters at each stage. Accordingly, we shall employ the following definition:

Definition 2.1. An equilibrium strategy profile a is called sequentially-Pareto-undominated, if for every $t \in$ $\{1, \ldots, k\}$ there does not exist another equilibrium strategy profile which coincides with a up to stage $t-1$, whose outcome is weakly preferred by all voters in F^{t-1} and strongly preferred by at least one of them. The payoff that such a strategy yields is called a sequentially-Pareto-undominated outcome.

[^7]The concept of 'strong equilibrium' was introduced in Aumann [1959]. We shall encounter in the next section games for which strong equilibria do not exist. Nevertheless, we shall show in Section 4 that it is often possible to achieve 'quasi-strong equilibria' as defined below:

Definition 2.2. An equilibrium strategy profile σ is called quasi-strong, if at no stage can any voter benefit by a deviation that involves a proper subset of the voters.

This concept is in a sense weaker than Aumann's, because it does not allow for deviations involving all the voters. In another sense it is stronger, because it tells us that no voter can gain even if others lose.

-16-

3. Some interesting simple examples

A universal equilibrium profile. One equilibrium profile always exists in pure strategies: ${ }^{14}$

If there is more than one founder, each founder votes at stage 1 for every candidate - friends and enemies and (off the equilibrium path) every voter votes always for every candidate. This is certainly an equilibrium point, as nobody can change the outcome.

If there is only one founder he chooses that stream that maximizes his utility given that as soon as there are at least two voters, each will vote for every candidate. For example, under pure friendship and enmity (Assumption 8a), ${ }^{15}$ he will vote for all his friends in the first stage, if he has more friends than enemies (and every candidate will be brought in at the second stage) and if the number of friends does not exceed the number of enemies he will vote for nobody until the last stage, whereupon he will bring all his friends.

A transitive friendship relation. Here we assume additivity within each stage and across stages (Assumption 8b). If friendship is transitive, then the following is an equilibrium profile: Each founder votes for all his friends at the first stage and (off the equilibrium path) each voter votes for all his friends. Indeed, under this strategy, a founder need not be afraid that any of his candidates will bring anybody later and no voter can gain by deviation, neither by voting for fewer friends nor by bringing in enemies.

This equilibrium profile is perfect (see Selten [1975]), because the strategy for each player remains a best reply against any possible trembles of the others. Surprisingly, it is not necessarily a sequentially-Paretoundominated equilibrium profile (See Example 3.2 below).

[^8]The case $\mathrm{k}=1$. This casc is quite clear under additivity within a stage (Assumption 8b): Having each founder volitg for his friends is ceartainly an equilibrium profile. It is perfect and Parctomodominated, but it is thot necessarily strong. For example, under pure friendship and enmity (Assumplion 8a), if there are several founders, cach having ons and a different friend then the set of all founders can all benefit by all voting for nobody. This example, which can easily be exterded to ary number of stages, demonstrates that ane cannot altofls obtain a strong equilibrium profite.

We remark that under friends and enemies and additivity within each stage (Assumplion 8b), every voting profile that produces the aet of all friends of all the original founders as an ontrome and in which each founder votes at least for his friends, constitutea adso an oquilibrium prolile. Tlise profites prodnce the same outconne, soy they are all Pareto-undominaled but they nuen] not be perferct: voting for one's friends only is a dominant strategy arainst any tremble.

Complications can occur if additivity does not prevail, as the following example shouss: ${ }^{16}$

Example 3.1. $F^{0}=\{1,2\}, k=1, C^{0}=\{a, b\}$,

$$
\begin{array}{llll}
w_{1}(a)=2, & u_{1}(a)=3, & u_{1}(b)=1, & u_{1}(a b)=0, \\
u_{2}(0)=3, & u_{2}(a)=0, & u_{2}(b)=2, & u_{2}(a b)=1 .
\end{array}
$$

Possible scenario: Founder 1 likes to stay alone. ${ }^{17}$ He thinks it is a good idea to bring a to the society and it is a bad idea to bring b. It is a disaster to bring both, because the two will fight all the time. Founder 2 does not like n 's views. He somewhat prefers $b^{\text {, but }}$ bonld above all like to shay alone. Bringing both is a 'compromise' between the previous two undesirable cvents.

[^9]The pure-strategy equilibrium points are $(b, b),(a, a b)$ and $(a b, a b)$. None of them is perfect - they arc all eliminated by weak domination. The only perfect equilibrium is mixed, in which Founder 1 votes for 0 and a with exulal probabilities and Founder 2 votes for b and b with equad probabilities.

This example demonstrates that sometimes. me has to resort to mined strutegies if one waits a perfect equilibrium profic. We shall ieturn to this issue in Section 5 .

The case $\mathrm{k}=2$. This case carries other types of complications as is martifested by the following two examples. These complications appeas already under pure frieudship and enmity (Assumption 8a). This assumption twill prevail for the rest of this section.

Exsmple 3.2. $N=\{a, b, c, d, e, J\} ; F^{0}=\{a, b\} ; \operatorname{fr}(a\}=\{c\} ;$ fr $(b)=\{d\}, \operatorname{Ir}(c)=\mathrm{fr}(d)=\mathrm{Ir}(e)=$ $\operatorname{fr}(f)=0 . k=2$. (It does not matter who the candidates e and f have as friends.)

Since friendship here is varucusly transitive, the following is a perfect, equilibrium profile: a notis for c al both stages and b wotes for id at both stages, regardless of the historiese, Nevertheless, there is another equilibium profile that is prefecred by both players: players a and b bring their friende ondy in the second stage and tif anyonte dewiates in the first shoge, both a and b invite all ble remaining candidates in the second stage. In this strategy each tounder ties the hands of the other founder: If you do not abide, we shall putish you by briuging in al the enemies." This is even astrbgame-perfect equilibrium and sequentially-Paretomendominated, ${ }^{18}$ but it is not perfect: Whatever the action of the other persum, voting only for one's friend in the last stage is never worse and in some cases better than the prescribed action.

[^10]We see alrcady in this simple example the dilemma: Which equilibrium to recornmend? A perfect equilibrimm which yields small but 'safe' profits or an equilibrium which maximizes profits, but uses threats whose credibility is questionable?

Example 3.3. $N=\left\{1,2,3, a, b, c, d, e_{1} \int, g, p, q, r, s\right\} ; k=2 ; k^{0}=\{1,2,3\} ; \operatorname{fr}(1)=\{g\} ; \operatorname{fr}(2)=$
 $\{s, p ; \operatorname{fr}(f)=\{s, \varphi\} ; \operatorname{fr}(g)=\{s, p ; \varphi\} ; \operatorname{fr}(p)=\operatorname{fr}(\varphi)=\mathrm{fr}(v)=\mathrm{fr}(s)=0$.

We reach a conclusion by the following heuristic arguments: At first one thinks that 1 should not invite g at stage 1 , because inviting him would bring about three enemies of 1 in the second stage. Similarly, 2 should apparently not invite any of his friends, because that would briug him mere enemies in the last stage. Player 3, however, should invite oll his four friends (not less!) in the first stage, because that will bring him only three enemies in the next stage, with a net profit of $1-3 \epsilon$, compared to not inviting any friend in the first stage.

Realizing that p, q are going to be in the society in the last stage anybow, player 2 should mot hesitate to vote for his friends in the first stage: He gets two friends at that stage but suffers from only me additional enemy next stage.

Realizing that also will be present in the last stage anyhow, it now followa that 1 can only gain by bringiug his friend in stage 1 .

Thus, the following is an equilibrium profile; Every coter brings all his friends as soon as he is allowed to vole.

The utilities (not including utilities for time spent with the original founders and ignoring multiples of f) are: $u_{1}=-14, u_{2}=-10, u_{y}=-2, u_{g}=-10, u_{e}=u_{f}=u_{1}=u_{b}=u_{c}=-12, u_{d}=-10, u_{p}=$ $u_{s}=u_{r}=u_{s}=-10$.

-20-

It can be checked that this is indeed an equilibrium profile and, moreover, it is perfect. ${ }^{19}$

This is not a sequentially-Pareto-undominated equilibrium. Like in the previous example, there is a sequentially-Pareto-undominated, subgame-perfect but not perfect equilibrium that will be strictly preferred by all original founders, and in fact, by everyone who will find himself eventually in the society; namely, to invite nobody in the first stage, invite one's friends in the second stage and punish deviations by each voter inviting everyone in the second stage.

To sum up: We exhibited here a "safe" equilibrium outcome that does not yield much to the founders and another "not so safe" that brings about higher utilities to the founders, and moreover brings about a society with much fewer frictions in it. Which one (if any) should be chosen has to be decided by the members. Do they trust their co-founders to honor the "agreement" in the second case? Do they believe that the "punishment" will be carried out in case of a breach? The answer to such questions, we feel, is beyond the scope of the theory.

When many common enemies exist. We have seen in the previous example how a punishment can force an equilibrium. In fact, if there are enough common enemies, then any agreement between the current founders, at any stage other than the last, can be enforced by a strategy that stipulates that out of the agreement all voters will vote for all common enemies as soon as they recognize that they are off the equilibrium path. This is even subgame-perfect.

The question then becomes: Which agreements are the players likely to sign? Realizing that almost all agreements can be made binding as explained above, this case should be handled with the tools of cooperative game theory and this is outside the scope of the present paper.

We keep the above in mind but we wish to make the following two observations: (1) In real life one

[^11]can usually extend' the set of candidates so as to include as many conmon enemies as one 'wishes'. (2) Nevertheless, a threat to bring these comman enemies is often not crodible as a general procedure. It often would be considered unthinkable, bocause it would undermine the very foundations apon which the society rests. Thus, althongh such threats may be leasilble, often they are not viahle, which brings us again to the recognition that a model does not usually rapture all the intricacies of à real siluation.

The helpful enemy. We have seen how voting for an enemy may bo beneficial off the equilibrium path. The following example will stow that voling for an enemy may be beneficial also along the equilibrium path.

Example 3.4. $N=\left\{a, b_{4}, b_{3}, \ldots, b_{5}, c_{1}, c_{2}, \ldots, \epsilon_{5}, d_{2}, e^{\prime} ; F^{0}=\{a\} ; \operatorname{fr}(a)=\left\{b_{1}, \ldots, b_{5}\right\} ; \operatorname{fr}\left(b_{i}\right)=\right.$ $\left\{c_{i}\right\}_{:} i=1, \ldots, 5 ;$ fr $\left(c_{q}\right)=\{d\}, i=1, \ldots, 5 ; \operatorname{fr}(d)=\{e\} ;$ fr $(e)=\{; k=4$.

The founder would like to bring all his friends, but if he simply does so at the firsl stage chene each b_{i} will bring c_{i} in the next stage. This is because the b_{i} 's will not foar ${ }^{20}$ that c_{i} will bring δ bofore the last stage, knowing that if c_{i} does wo d will bring e. To prevent this from happening, the founder can wole for e in the first stage, A complete strategy profile is this:

$$
\begin{array}{ll}
\sigma_{e}^{t}=\emptyset, & i \in\{2,3,4\}, \quad \forall F^{i-1} ; \\
\sigma_{d}^{t}=\{e\}_{1} & i \in\{2,3,4\}, \quad \forall F^{t-1} ; \\
\sigma_{c_{i}}^{4}=\{d\}, & i \in\{1, \ldots, 5\} ; \\
\sigma_{c_{i}}^{t}=\left\{\begin{array}{cl}
\{d\}, & \text { if } \epsilon \in F^{t-1}, \quad i \in\{1, \ldots, 5\}, \quad t \in\{2,3\} ; \\
\emptyset, & \text { otheruisc },
\end{array}\right. \\
\sigma_{b_{1}}^{t}=\left\{c_{i}\right\} ; & i \in\{1, \ldots, 5\} ;
\end{array}
$$

[^12]\[

$$
\begin{aligned}
& a_{b,}^{3}=\left\{\begin{array}{cl}
\left\{c_{i}\right\}, & \text { if } d \in F^{2}, \\
0, & \text { otherwise, }
\end{array} \quad i \in\left\{1_{1} \ldots, 5\right\} ;\right. \\
& \sigma_{s_{1}}^{2}=\left\{\begin{array}{ll}
\left\{c_{i}\right\}, & \text { if } d \in F^{1}, \\
\left\{c_{i}\right\}, & \text { if } e \notin F^{1}, \\
0, & \text { otherwise: }
\end{array} \quad i \in\{1, \ldots, 5\} ;\right. \\
& \sigma_{n}^{t}=\emptyset, \quad t=2,3,4 \text {; } \\
& \sigma_{r a}^{\mathbf{I}}=\left\{b_{1}, \ldots, b_{6}, e\right\} .
\end{aligned}
$$
\]

One can verify that this is indeed an equilibrium profile.

Example 3.5. The game of chicken. In this \&xample, $F^{0}=\{1,2\}, C^{0}=\left\{x_{1}, x_{3} ; y_{1}, y_{2}\right\}, k=3$. Founder 7 likes only x_{1}, who likes only y_{1}. Founder 2 likes only I_{3}, who likes only y_{2}. Agents y_{1} and y_{2} like ouly each other.

Skipping formalities, earh founder can essentially pither choose his friend in the first stage, or refrain from doing so. (He strictly loses by voting for ath enemy art this stage.) Unfortunately, if player 1 whtes for his friend at the first stage, player 2 will lose if he too vates for his own friend. The reason is that in this case it is clear that both y_{1} and y_{2} will be present in stage 3 , so there will be no reason for buth x_{1} and x_{2} to refrain ${ }^{21}$ from voting for their friends in stage 2 . These friends are enemies of the founders. Putling together the relevant information and ignoring ϵ, we get the following payoff as functians of the choices in the first stage:

[^13]I'his is the famous game 'chicken'. It has two equilibrium points: ($x_{1},(t)$ and (th, x_{2}), yielding payolls ($1,-3$) and ($-3,1$), respectively. In addition, the players can each use a mixed strategy ($1 / 2,1 / 2$) that yislds a more sensible payoff $(-1.5,-1.5)$. All these are undominated and therefore perfect (see Kohlberg and Mertens [1986], Appendix D).

Even more sensible for the players is to decide by a flip of an unbiased coin who will bring his friend to the saciety. The expected payoll will then be $(-1,-1)$.

This earmple centus to show that mized strategies should not be ignored.

4. Common voting and partial common voting

At the beginning of this section we study common voting profiles; namely, profiles under which all voters vote for the same set of candidates at each stage. We show that every equilibrium outcome that can be reached by a pure-strategy profile can also be reached by a common-voting profile that generates the same stream of members. These profiles have the additional advantage that they are quasi-strong (Definition 2.2) equilibria whenever they are subgame-perfect and the voting scheme obeys additivity across stages. A quasi-strong equilibrium gives each voter the assurance that, without his participation, no subgroup of the other players will agree to deviate, because none of them will gain, and some may even lose.

We then proceed to characterize and, at least theoretically, construct all the equilibrium streams, and therefore all equilibrium outcomes that can be achieved by pure strategies. We also indicate where to look when we want to get all the sequentially-Pareto-undominated equilibrium streams, as well as all the subgame-perfect streams.

In the last part of this section we provide interesting procedures that produce equilibrium profiles that only 'partially' employ common voting, or even some in which the voters vote for distinct sets.

A key role in reaching some of these results is expressed in the following:

Lemma 4.1. Quota one implies that whoever the voters bring in can also be brought by one voter. Consequently, if a set S of candidates is chosen in an equilibrium profile of a 1-stage game, this set has the property that, if elected, no voter would have preferred that more members were added to it.

Proof. Indeed, had he preferred so, he could benefit by adding these members in his vote, contrary
to the fact that the profic was an equilibriun one.

All strategies in this sechion are pure and history-independent. We shall rarely repeat this fact. To awoid trivialities we assume that $C^{\circ} \neq 0$.

Consider a game Γ that represents a vocing scheme, as deseribed in Section 2. Every subgame of this game is itself a game that can result from a voting scheme. Only the set of foundere and candidates and the uumber of stages dilier. This enablec us to work by induction. Suppose that the play in all the proper sulgames is krown and fixed One can then construct a one-stage game I^{2} whose brec is the subtree for the first stage of Γ and whose condpoinl payoll vectors are calculated from dlose of Γ : 'l'he payoft vector at an endpoint of Γ^{1} is the payoff vector that results in Γ from remehing the corresponding node in I' and continuing along the fixed path of the subgeme attarhed to that node. ${ }^{22}$ Note that the players in Γ^{3} are the original founders, and cach one o[them has exasity one information set. In fact, I^{1} is a game played simultanesusly by ati the founders. Note also that endpoints of Γ^{1} at which the same candidates were elected have the same payoff vectors if the conlinuations are listory-independent.

Let at he an arbitrary equilibrium profile in Γ. Its first stage σ^{1}, regarded as a gtrategy profile in Γ^{1}, is an cquilibrium profile for this game. ${ }^{23}$ Indeast, if a player can benefit by deviation in Γ^{1}, he could also benefit in I' by choosing the same deviation in the first stage.

We can now construct another equilibrium profile \bar{o}^{1} for Γ^{1}, by instruteting enery original founder to vote for the urion of all the wotes of the formalers ander σ; i.e..

$$
\begin{equation*}
\bar{\sigma}_{i}^{\prime}=\cup_{j \in F^{0} \sigma}^{l}, \quad \forall i \in F^{0} . \tag{4.1}
\end{equation*}
$$

[^14]We call σ^{1} the first stage profile generated from σ^{1} ay coramon uoting. Anslogonsly, we say that $\bar{\sigma}$ is a strategy profite yenerated from a history-indencentent strategy profile o by common voting, if each stage, on and off the equilibrium path, is generated from the corresponding stage of a by common woting. Stralegy $\bar{\sigma}$ is well defined and σ and $\bar{\sigma}$ yield the same strean of memrers. The same stream of members for σ and $\bar{\sigma}$ orents also in all the subtrees off the equilibrium path; therefure $\bar{\sigma}$ is an equilibrium profile yielding the same payoffs as a and it is subgame-purfect if σ is subgame-perfect.

Proposition 4.2. Let of by a bistory-independent pure-strategy equilibrium prefle for Γ. The strategy profile \bar{v}^{1}, genorated from σ^{1} by common voting: is a quisi-strong equihbrium profie for Γ^{1}.

Proof. If $\left|F^{0}\right|=1$, then $\bar{\sigma}^{1}=\sigma^{1}$, it is an equilizrium point and vacucusly a quasi-strong one. Let $\left|F^{\mathrm{D}}\right|>1$. The set S of players that was elected under $\bar{\sigma}^{1}$ is the sanne set that was elected under σ^{1}. It yields the same payments, because σ was a bisrory-independent strategy. Any deriation from $\dot{\bar{\sigma}}^{1}$, made by a nommpty proper subset of the founders, can only yield a set that contains S, because the remaining founders still vote for S. Therefore, if such a deviation from σ resulted with some mombere gaining, then, in σ^{1} cach of them could have forced the same better payment, by alone adding the same additional candidales, contrary to the fact that σ^{1} is an nquilibrium profile for Γ^{1}. n

One should be a bit careful when one tries to generalize Proposition 4.2 to multi-stage games: At future stages 'new' players may enter the game and one has to take into account possible agreements involving them. Consider the following:

Example 4.3. Let $F^{0}=\{1,2\}, C^{0}=\{\mathfrak{a}, b\}$. Under pure friendship and elinity (Assumption 8a $)_{1}$ agents 1 and 2 like agent a. Agent a like sgent b. For all ather paits (i, j) j is an enemy of i,
$k=2$. The following strategy profile is sulgame-perfect:

$$
\sigma_{1}^{1}=\emptyset, \quad \sigma_{1}^{2}=\{a\}, \quad \sigma_{2}^{1}=\emptyset_{1}, \quad \sigma_{2}^{2}=\{a\}, \quad \sigma_{2}^{2}=\{b\} .
$$

It is already in common voting for the original founders: they always vate the same way. Nevertheless, this profite is not immune to deviation involving a proper subeet of the feunders: Agents 1 and a can deviate by 1 woting for a aiready in the first stage and a woting for 0 at the second stage. By this deviation agent 1 gains and agent a also gains, becausc he becomes elected. ${ }^{24}$

This cxample indicates that one should require that common voting involves all members that enter the game on and of the equilibrium path. Indeed, if we augment the above example and request Inat. bould 1 and 2 vote for b at the second stage, when a is elected in the first atage, then no profitable deviation can take place by a proper subset of the founders. For example, it will do no grood that a will rerain Crorr voling b, becanse founder 2 will still vote for b.

We kerp in mind that whell we talk about a deviation of a set of voters we allow all kinds of agreements involving Cuture candidates. Candidates off the equilibrium path will agree to anyhing, because they prefer to be in the society under all circumstances (Assumption 7). It stands to reason to request that candidates along the cquilibrium path should not lose when we claim a profitable deviations, although this is not important lor the next theorem.

Theorem 4.4. Let σ be a purestrategy listory-independent subgame-perfect pquilibrium profile for a game Γ represcnting a voting scheme defined on preferences satisfying additivity across stages (Assumption 8c). Let $\bar{\sigma}$ be the profile generated from σ by common voting. Then $\bar{\sigma}$ is an equilibrium profile yielding the same stream of members and thercfore the same payoff vectors as σ. Morenver, if is a quasi-stmong equilibrium profile.

[^15]Proof. The stratery profile $\bar{\sigma}$ yields the sume stream of members as σ, so the payolls are the same for every player. Moreover, it is a subgarne-perfect equilibrium profile, because if one could berefit. by deviahion in a subgame, he courd benefit. by the same deviation in σ. We stall prove by induction on the number q of stages left since a possible deviation started to occur, that no proper subset of F^{k-p} can deviate in suct it way hat it least one deviator gains. Proposition 4.2 establishes this [avil lor $q=1$. Suppose that this was verified for subyames with $q-1$ stages and we are uow facing a deviation starting in a subgame $\hat{\Gamma}$ having q stages. Let τ be a deviation from $\bar{\sigma}$, such that the set of deviators does not include all the woters F^{k-q}. Denote by $\mathrm{r}{ }^{w}$ the first stage of $\hat{\Gamma}$ with payoff vectors at the endpoints calculated on the asaumption that the contimuation was as dictated by $\bar{\sigma}$ in L^{\prime}, Denote by $\Gamma^{\text {sh }}$, the first stage of $\dot{\Gamma}$ with the payof vectors at the endpoints calculated on the assumption that the combinuation was as dichated by r in Γ^{25}

Denote by A the endpoint. of $I^{\text {wo }}$, that is reacherd il the relevant pact of $\bar{\sigma}$ is played. Denote by B the endpoint: of Γ^{*} that is reached if the relevant part of τ is played. Denote by A and B the cortesponding endpoints in $\Gamma^{* *}$. A and B correspond also to nodes of $\Gamma_{\text {, }}$ rearhed under $\bar{\sigma}$ and T at. the end of stage $k-q+1$. We denote these nodes also A and B.

Let Δ be the subgame of Γ starting at B. It has $q-1$ stages. We can regard τ as performed in tro steps.

Step 1: The play changes from A to B and chen continues as dictated by $\bar{\sigma}$.
The resulting payoff ventror would their be the payoff vector at endpoint B of Γ^{*}, whereas the payoff vector al endpoint. A of Γ^{*} is the payoff vector in Γ^{\prime} if the play is \bar{a}.

Step 2: Perform further modilication in Δ, if this is dictated by τ.
The proof will conclude if we show that no deviator gains either in Step 1 or in Step 2.

[^16]Indeed, the claim for Step 1 means that no deviator gains in Γ^{*} by moving from A to B. The clain for Step 2 means that no deviator gained in Δ by switching from $\bar{\sigma}$ to r in this subgame. This implies that no deviator gained in passing from B in Γ^{*} to B in $\Gamma^{* *}$, because these payoff vectors differ from those of Δ by the same constant payoll vector that was accumulated until B was reached. ${ }^{24}$ Thus, ultimately, no violator gained in Γ by deviating from $\bar{\sigma}$ to τ.

The elaim tor Step 1 follows from Proposition 4.2, becanse $\bar{\sigma}$ inducss a pure-strategy common-voting profile in I^{*}. The claim for Step 2 is simply the induction lypothesis.

We have shown that all pure-strategy history-independent equilibrium oulumes can be generaterd by common wating. ${ }^{27}$ The natural question that now eomes to thind is how to characterize all streams that constitute such outcomes. Proposition 4.5 and Theorem 4. provide an answer.

Proposition 4.5. Assume that there are at least two founders in a 1 -stage game I^{1}. A set S of candidatcs chosen can result from a pure-strateng equilibuium profle iff S bas the property that no fourder would prefor to add members to $S .^{28}$

Proof. The 'only if' part is Iemma 4.1. Conversely, suppose S has this property and is woted, say; by common voting. Then no player can beafit by deviating alone: He cannot delete membera from S and he does nat want to add members to S. -

Thus, to generate all equilibrium outconcs for a 1 -stage game one has to examine all subscts S of C^{0} and select those that have the property that no founder would like to augment them. This task is manageable by a.compuler in $\left|N^{\prime}\right|$ is reawonably small and $k=1$. It becomee less so when the numbert of stages increases.

[^17]Theorem 4.6. Consider a game Γ, representing a voting scheme, whose utilities obey additivity across stages (Assumption 8c). Work backwards from the final stages constructing strategy profiles, analogous to the one in Proposition 4.5, taking care to choose the same S, whenever the same voters appear at different starts of a same stage. Continue, as long as there are at least two voters. If you encounter a node with only one voter choose a path leading to a maximal payoff to this voter. The above construction results in a purestrategy history-independent subgame-perfect equilibrium. All pure-strategy history-independent subgameperfect equilibrium streams are obtained if one exhausts all possibilities of the above construction.

Proof. Start from the last subgames and work backwards by common voting. At each stage you find yourself with a 1-stage game with fixed history-independent subgame-perfect continuations, for which Proposition 4.5 can be applied. This shows that you will thus construct a pure-strategy history-independent subgame-perfect strategy profile for the entire game. By Theorem 4.4, all pure-strategy streams will be reached if one exhausts all possibilities.

It may well happen that several sets S have the property that no founder would have preferred to add more candidates, given that they were elected. If such a set S_{1} is contained in another such a set S_{2}, then the payment to each of the founders under S_{2} is not greater than the payment under S_{1}, since otherwise a founder who would have preferred to vote for S_{2}, rather than for S_{I} could have forced this outcome. Consequently, all sequentially-Pareto-undominated equilibrium outcomes in a one stage game can be found throughout common-voting procedure described in Proposition 4.5 but choosing only sets S that are minimal under inclusion. Similarly, we can obtain all sequentially-Pareto-undominated equilibrium outcomes in a multi-stage game by performing the construction of Theorem 4.6, but restricting ourselves at each stage to sets S that are minimal under inclusion. (Of course some equilibria reached by this construction may not be sequentially-Pareto-undominated.)
[f we were only interested in equilibrium outcomes we could slop leres. But we are abo interested in other equilibrinm profiles that lead tosuch outcomes, in particular those obtained by pure strategies. Wie shall close this section by prodrring a wider class of egulibtinm profiles. These extend the common-voting class in that they involve only partial common voting, or even mo common voling at all. This last type of profile will play an important cole in Section 5 , when we dead with perfect equilibria.

Proposition 4.7. Let $\mathrm{h}^{\text {1 }}$ result from agame Y^{\prime} baving known and fixed play at all proper suluganes. Assumb that $\left[\right.$ has at least two founders. Let S be aset of candidates from C^{n}, having the property that, if elected, no original founder will prefer to add players to S. For each founder i, choose a set P_{i}, contained in S, that is a best response to ${ }^{29} S \backslash P_{i}$, Let $G=S \backslash \bigcup_{j \in P^{0}} P_{j}$. Finally, let $V_{i}=P_{i} \cup C$. Under these conditions: $\left\{V_{i}: i \in F^{\prime}\right\}$ is an equilibrium profile for Γ^{1}.

The proof requires two lemmas:

Lemma 4.8. Let Γ^{1} be a first stage game, as previously described. Let P_{i} be a best response of founder itaginst $S \backslash P_{\text {B }}$, where S is an arbitrary given set of candidates from C^{0} containing P_{i}. If $Q \subseteq S \backslash P_{i}$, then $P_{\mathrm{i}} \cup Q$ is aiso a best response of i to $S \backslash P$

Proof. Q is covered anyhow by $S \backslash P_{i}$, so it makes na difference whether i includes Q in his vote, ar not. -

Lemma 4.9. Let P_{i} be a best response of founder i, playing Γ^{1}, against $S \backslash P_{i}$, where S is an arbittasy set of candidates containing P_{i}. If $R \subseteq P_{i}$ then $P_{i} \backslash R$ is a best response of i to $\left(S \backslash P_{i}\right) \cup R$.

Proof. Voling $P_{i} \backslash R$ against $\left(S \backslash P_{i}\right) \cup R$, would yield player i the utility gained from S being ${ }^{29}$ Sach a sect always exista; for example ©
elected. If voting for another set, Q, would yield him a higher utility, then voting $Q U R$ would be a better response to $S \backslash P_{8}$ than woting F_{i}, berause $(Q \cup K) \cup\left(S \backslash P_{i}\right)=Q \cup\left(R \cup\left(S \backslash P_{i}\right)\right.$.

Proof of Proposition 4.7. P_{i} is a best response of i against $S \backslash P_{i}$ therefore, V_{i} is a best response of i against $S \backslash P_{i}=\left(S \backslash P_{i}\right) \cap\left(U_{j \in F^{0} \backslash\{i\}} V_{i}\right)$ (Lemma 4.8). By Lemma 4.9, $\left(C \cup P_{i}\right) \backslash U_{\left.j \in F_{i j}\right\}} P_{j}$ is a best response of i against $U_{j \in P^{0}\{\{;\}} V_{j}$. Invoking Lemma 4.8 once more, we find that V_{3} is a best response of i against $U_{j \in F^{\circ} \backslash i j} V_{j}$.

Theorem 4.10. Consider a game Γ, represcnting a voting scherwe, whose utifises obey additivity arrose stages (Assumpfion sc), ff a construction analogons to cheo one in Propasition 4.7 is donc at every start of a pubgaute of Γ, starking frord he firial staged and working backwands as fong as there are at least two voters, apd choosing the move leading to a maximal payoff if encountcring one voter, then, the resulting profile constitutes a pure-strategy subgame-perfect equilibrium-

Proof. We may assume tlati $\left|t^{\circ}\right| \geq 2$. Let σ be a strategy profile as described in the theoremn. Let Ti be a deviation made by player i, starting at a certain subgame f. If the deviation started at the last stage theal plaver i could not have benefitted from it either because the equilibrium path was not affected by the deviation, or, by Proposition 4.7, il il was.

Assume by induction that a player cannot gaim by deviating aloue in any deviation whose Itngth is at most $q-1$. Let \hat{I}^{\prime} be a $q^{-s t a g e}$ subgame. As in the beginning of this section ${ }^{30}$ construct 1-stage games Γ^{*} and $\Gamma^{* *}$, for the subgame \dot{I}^{\prime}, derived from σ and from $\tau:=\left(\sigma_{-\mathfrak{f}}, \tau_{i}\right)$, respectively. These games have the same tress, but their payoff vectors may be different, due to the different continuation by τ. Let A be bhe endpoint of these 1-stage gaures, as well as $\hat{\Gamma}$, reached vis σ and let B be the endpoint of these games reached via r.

[^18]Denote by Δ the subgame of $\hat{\Gamma}$ starting at B. By the induction hypothesis, player i cannot gain from deviating to r in the game Δ; therefore, his payoff at B in $l^{* *}$ is not smaller than lis payoff at B in $1^{* *}$, since a fixed "incowe" was accunulated in both cases; namely, the utility from the candidates at the first stage of $\hat{\Gamma}$ while ceaching B^{91} But reaching A in Γ^{*} yidids player i a utility, which is at least as much as reaching B in the same game, bccause the restriction of σ to $\Gamma^{\prime \prime}$ is an equilfbrium for Γ^{*} by construction and Proposition 4.7. Consequently, the payof toi at A in Γ^{*} is not smaller than the payoff to i at B in F^{*-}, which proves thal σ is indeed subgame-perfect.

[^19]
5. Perfect equilibria in pure strategies

Common-voting equilibria are usually not perfect. A voler may be tempted to deviate, fignting that the others will continne to vote in the same way with high probability, ir order to extract some profit in case of 'trembles'. In this section we provide a sufficient condition for the existence of perfect equilibria in pure strategies and show how ore can construct thern. We then show by examples that this condition is not necessary, as there are other cases in which purestrategy perfect equilibria exist. Nevertheless we show that for 2-stage games with additive preferences across stages and within a stage, pure-strategy perfent eqnilfibria alwhys exist.

We are able to prove the main theorems under the assumption that the voting scheme is yeneric; namoly, it is such that different streama yield different utilities for each player. Example 5.3 shows that this assumption is neccssary for the result.

Proposition 5.1. Let l^{11} be a first stage game, derived from a game Γ represcntint a geveric voting achente as defined in Section 4 given a fixed continuation at the proper subgames of l'. Suppose that there cxists a sct of votes $P=\left\{P_{g}\right\}_{j \in \mathrm{Fe}^{2}}$, where $P_{j} G_{C}^{\prime}$, whose ubion is denoted by S, that satisftes:
(1) P is ar equilibrium profle for I^{1},
(2) $P_{i} \cap P_{j}=\emptyset$, whenever $; \neq j$.

Defing

$$
\begin{equation*}
V_{f}:=\left\{x \in S: S \succ_{j} S \backslash\{x\}\right\} \tag{5.1}
\end{equation*}
$$

Under those conditions, ${ }^{32} \mathcal{V}:=\left\{V_{j}\right\}_{j \in F^{0}}$ is a perfect equilibrinm profile for Γ^{1}.

[^20]Terminology: Profile P_{+}satisfying (1) and (2) above will henceforth be called a generalizedpartation equilibutum profile (of S, when needed).

Proof. The theorem is certainly true ${ }^{33}$ if $\left|C^{0}\right| \leq 1$ of if $\left|F^{0}\right|=1$, so we assume that $\left|C^{0}\right| \geq 2$ and $\left|F^{0}\right| \geq 2$. We call members of V_{i} desirable for i. Other members of \mathcal{S} called undesirable for player i. For $\mathfrak{z d l}$ in F^{0}, denote $\mathcal{P}_{-i}:=\cup\left\{\Gamma_{j}: j \in F^{0} \backslash\{i\}\right\}$. As Γ_{i} is a best response of agent i to \mathcal{P}_{-i} and $P_{i} \cap P_{-i}=0$, it follows that each member of P_{i} is desitable tor i. Consequently,

$$
\begin{equation*}
P_{i} \subseteq V_{i} \subseteq s, \quad \forall i \in F^{n} . \tag{5.2}
\end{equation*}
$$

Conversely, if \bar{V}_{i} satisfies $P_{i} \subseteq \hat{V}_{i} \subseteq S$, then \dot{V}_{i} is a best response to P_{-i} (Themma 4.8).

For all j in F^{0}, denote

$$
\begin{align*}
& M_{j}:=\left\{T \subseteq C^{0}: T=P_{j} \backslash\{x\} \text { and } x \in P_{j}\right\}, \tag{5.3}\\
& H_{j}:=\left\{T \subseteq C^{0}: T \neq P_{j}, T \neq V_{j}, T \notin M_{j}\right\} . \tag{5.4}
\end{align*}
$$

Note that $M_{j}=$ itl $S_{j}=4$ and $I_{j} \neq$, because $\left|C^{0}\right| \geq 2$, as can easily be checked. For any positive ϵ_{1}, $\epsilon_{2}, \epsilon_{3}$, such that $\epsilon_{1}+\epsilon_{2}+\epsilon_{3}<1$, define $\epsilon=\epsilon_{1}+\epsilon_{2}+\epsilon_{3}$. For atach j in F^{0}, define ϵ^{j} as $r_{1}+\epsilon_{2}+r_{s}$, if $\mathcal{P}_{-j} \neq \emptyset$ and as $\epsilon_{1}+\epsilon_{4}$, if $\mathcal{P}_{-j}=\emptyset$. We construct the following completely mixed stralegy σ_{j} for player $j, j \in F^{0}$;

[^21]With probability $1-\epsilon^{i}$ vote $V_{j}, \quad 0<\varepsilon^{j}<1$;
With probability ϵ_{1} vote $F_{j}, \quad 0<\varepsilon_{1}<1$:
(If $P_{j}=V_{j}$ wote for V_{i} with probabititity $1-\epsilon^{j}+\epsilon_{1}$.)
If $P_{j} \neq \emptyset$ votc with probability $\frac{\epsilon_{2}}{\left|M M_{j}\right|}$ for $P_{i} \backslash\{x\}$, for each member x of P_{i};
Vote with probability $\frac{\epsilon_{3}}{\left|H_{j}\right|}$ for each member of H_{j}.
Additioual conditions on $\epsilon^{\hat{i}}, \epsilon_{1}, \epsilon_{2}, c_{3}$ will be plared later, but we can now stave that

$$
\begin{equation*}
\varepsilon^{\prime}=\epsilon_{1}+\varepsilon_{2}^{j}+\epsilon_{3}, \tag{5.9}
\end{equation*}
$$

where we set $\epsilon_{2}^{j}=\epsilon_{2}$ if $P_{j} \neq 1$ and $\varepsilon_{2}^{j}=0$, otherwise. Consequently, t_{1}, $\epsilon_{2}^{j}, \epsilon_{3} \rightarrow 0$, if $\epsilon^{j} \rightarrow 0$; namely, $\sigma_{j} \rightarrow V_{j}$ for each $j \in F^{0}$ and $\left\{\sigma_{i}\right\}_{j \in F^{*}}$ is a walid test senquence. The proof will be concluded if we show that the epsikns can be closen in such a way that V_{i} will be a best response to oo itor all the members of the sequence.

For a fixed i in F^{0}, let T be a.set chosen by $F^{0}\left\{\{i\}\right.$ under $\sigma_{-i}:=\left\{\sigma_{3} ; j \in F^{0} \backslash\{i\}\right\}$. Denote by

η : The probability that $P_{-i} \subseteq T \subseteq S$ and at least one member j in $F^{0} \backslash\{i\}$ did not votc P_{j}.
(Note that $\%$ could be zcro. This happent ior example, if $S=0$. .)
η_{I} : The probability that cach j in $F^{10} \backslash\{i\}$ voled P_{j}.
$y_{2}(x)$: The probability that $T=\mathcal{F}_{-i} \backslash\{x\}$, for some x in P_{-i}.
Note that no $\boldsymbol{P}_{2}(x)$ is defined if $P_{-i}=0$.
η_{3} : The probability that any other set is chosen,

Clearly,

$$
\begin{equation*}
\eta+\eta_{1}+\sum_{x \in \mathcal{P}_{-i}} \eta_{2}(x)+\eta_{3}=1_{1} \tag{5.10}
\end{equation*}
$$

where summation over an emply set is defined as zero.

We can place the following lounds on these probabilitios as follows:

$$
\begin{gather*}
\eta_{1} \geq \epsilon_{1}^{-1}, \quad \text { where } q=\left[F^{0} \mid ;\right. \tag{5.11}\\
\eta_{2}(x) \geq \epsilon_{1}^{g-2} \epsilon_{2} /|S|: \quad \text { all } x \text { in } \mathcal{P}_{-i} \tag{5.12}\\
\eta_{s}(x) \leq \epsilon_{2}+\epsilon_{3}, \quad \text { all } x \in \mathcal{P}_{-i j} \tag{5.13}\\
\xi_{3} \leq\left(\left(\epsilon_{2}\right)^{2}+\epsilon_{3}\right) \cdot w_{1} \quad \text { where } w=2^{f^{\prime}} \mid(q-1) . \tag{5.14}
\end{gather*}
$$

Indeed, (5.11) follows from the defnitions of ϵ_{1} and T_{1}. (Stict inequality prevails if $P_{j}=V_{j}$ for sowc j in $\left.F^{0} \backslash\{i\}.\right)(5.12)$ follows from the fact that the event that $\mathcal{P}_{-i} \backslash\{x\}$ is chosen by $F^{0} \backslash\{i\}$, whos probalility is measured by $\eta_{2}(x)$, occurs, for example, if agent j, whose P_{j} contains x, votes $P_{j} \backslash\{x\}$ and every other player \hat{E} in $F^{0} \backslash\left\{\begin{array}{l}\text { i }\end{array}\right\}$, votes $P_{t}{ }^{34}$ (5.13) fallows from the fact that this crent $\left.\mathcal{P}_{\mathbf{- i}}\right\}\{x\}$ is included in the event: The above player j voted for neither P_{j} nor V_{j} (probability $\epsilon_{2}^{j}+\epsilon_{3} \leq \epsilon_{2}+\epsilon_{3}$) (see 5.9), and all other players in $F^{0} \backslash\{i\}$ woled according to σ_{-i} (probability atot larger than 1). To prove (5.14), notice that this event occurs only if one oll the following elenuentary events happened:
(1) One player j in $F^{0} \backslash\{i\}$ did not vote either P_{j} or V_{2}, or $P_{j} \backslash\{x\}$, for some x in $P_{j}-$ an event whose probability is al most f_{3};
(2) Two players j and ℓ in $F^{0}\left\{\{i\}\right.$ voted $P_{j} \backslash\{x\}$ and $P_{\varepsilon} \backslash\{y\}$, for some $x \in P_{j}$ and $y \in P_{f}$ - an event whose probability is at most $\epsilon_{2}^{j} \cdot \epsilon_{2}^{\mathcal{E}}$.

[^22]The number of such cvents is at most w and $\varepsilon_{2}^{j} \cdot \epsilon_{2}^{\ell} \leq\left(\epsilon_{2}\right)^{2} \cdot(5.14)$ follows now from the observation that $\max \left\{\left(\epsilon_{3}\right)^{2} ; \epsilon_{3}\right\} \leq\left(\epsilon_{2}\right)^{2}+\epsilon_{5}$.
[n order to show perfectness of \mathcal{V}, we have to show that V_{i} is a best response to σ_{-i} for each i, if one chooses $\epsilon_{1} \epsilon_{1}, \epsilon_{3}, \epsilon_{3}$ appropriately, and that such a choice can be maintained for $\rightarrow 0$. To this end we denote:
h_{3} : The payoff to i if S is chosen.
a : The mininum loss to if a set T results, $T \neq S$, such that $T \supseteq P_{-i}$.
$b(x):$ The gain to i if $S \backslash\{x\}_{\text {; }}$ results, $x \in \mathcal{P}_{-i}$, and x is undesirable for i; i.e, $x \notin V_{i}$.
b : The minimuta of all the $b(x)$ for $x \in \mathcal{P}_{-i} \backslash V_{i}$.
c : The minimal loss to i if $S \backslash\{x\}, x \in \mathcal{P}_{-i}$ results, and x is dcsirable for i i.e., $x \in \mathcal{V}_{i}$.
M : The maximal payment in Γ^{1}.
m : The minimal payment in Γ^{1}.
Note that. $a_{:} b(5), c$ are positive, because the woting scheme is generic. Thus, only a vate giving the outcotue S is a best, reply to $\mathcal{P}_{\mathbf{- i}} . b(x)$ and c arc undefined if $\mathcal{P}_{-i}=0$. They are not, necensary [or this case as (5.19) will uot be used.

We now give bonuds on the payoffs to i under various pure strategice of his, when all agents in $F^{\prime \prime}\{\{i\}$ vote according to r.

If i wotes V_{i}, his payof is at least

$$
\begin{equation*}
\left(\eta+\eta_{1}\right) h_{i}+\sum_{x \in \mathcal{P}_{; i} \cap V_{i}} \eta_{2}(x) h_{i}+\sum_{x \in \mathcal{P}_{-i}\left\{V_{i}\right.} \eta_{2}(x)\left(h_{i}+b(x)\right)+\eta_{3} m_{1} \tag{5.15}
\end{equation*}
$$

Judeed, S is certainly covered if all members j in $F^{0} \backslash\{i\}$ vote either V_{j} or P_{j}, or if they vote $\mathcal{P}_{-1} \backslash\{x\}$ and $x \in V_{i}, I\left[\right.$, on the other hand, $\mathcal{P}_{-i} \backslash\{x\}$ results and $x \notin V_{i 1} ;$ will gain $b(x)$. In all cases, however, he will get all least m.

If i votes for a set Q_{1} which is not a best reply to \mathcal{P}_{-i}, hie payoll is at most

$$
\begin{equation*}
\eta_{4}+\eta_{1}\left(h_{i}-a\right)+\left(\eta_{3}+\sum_{x \in \mathcal{P}_{-i}} \eta_{2}(x)\right) M . \tag{5.16}
\end{equation*}
$$

Thdend, he will nat get more thas h_{i} if $⺊^{6} \backslash\{i\}$ vole T sach that $P_{-i} \subseteq T \subseteq S$. However, he will certainly get, at most $h_{i}-a$ if p_{-i} is voted by the others, which happens with probatility ${ }_{p}$ at. least. In all other cases he will not get more than M.

If i wotes for a set Q_{2} that is a best reply to \mathcal{P}_{-i}, but is different from V_{i}, then since $Y_{i} \subseteq Q_{2} \subseteq S$, Q_{2} results from V_{i} by omitting r members and adding s members from $S \backslash V_{i}$, wilh $r+s>0$. Here,

$$
\begin{align*}
& r=\left|\left(P_{-i} \cap V_{i}\right) \backslash Q_{2}\right|_{1} \tag{5.17}\\
& s=\left|\left(P_{-i} \backslash V_{i}\right) \cap Q_{2}\right| . \tag{5.18}
\end{align*}
$$

The pavment to i if he chooses such a Q_{2} is at most

$$
\begin{align*}
& \sum_{x \in\left(\mathcal{P}_{-1} \backslash V_{i}\right) \varphi_{2}} \eta_{2}(x)\left(h_{\mathrm{i}}+h(x)\right)+\eta_{3} h M_{-} \tag{5.19}
\end{align*}
$$

Here, sums wer sut eirply sel are considered equal to zero. Indeed, S will certainly result with prohahility $\eta+\eta_{\perp}$ at least. He will wase at least c each time $F^{0} \backslash\{ \}$ vote $P_{-i} \backslash\{x\}$ with 2 desirable for i and i does not vote for x in Q_{2}; otherwive, he will still get h_{i} if he limeself voted for x. He will not gain $b(x)$ from the omission of an undesirable 2 from P_{-i}, if he himself voted for x.

Expression (5.15) is not less than expression (5.16) whenever

$$
\begin{equation*}
a \eta_{1} \geq(M-m)\left(\eta_{3}+\sum_{x \in \mathcal{P}_{-i}} \eta_{2}(x)\right)_{2} \tag{5.20}
\end{equation*}
$$

because $i_{i} \geq \mathrm{m}$. This is all that is needed if $\mathcal{P}_{-i}=$ for V_{i} to be a best reply to $\sigma_{-i}{ }^{85}$ Indeed, in this case $P_{i}=S=V_{i}$ and agent i does not have a strategy that is a best response to P_{-i}, which is

[^23]different from V_{i}. If, however $P_{-i} \neq 0$, then, in addition to (5.20) the following inequality, derived from (5.15) and (5.19) and the fact that $b(x) \geq b_{1}$ should also be satisfied for all sets Q_{2} that are best replies to \mathcal{P}_{-i} but differ from V_{i} :
\[

$$
\begin{equation*}
\sum_{x \in\left(P_{-} ; \cap V_{1}\right) Q_{2}} \eta_{3}(x)+b \sum_{x \in\left\{\mathcal{P}_{-},\left\{V_{1}\right) \cap Q_{2}\right.} \eta_{2}(x) \geq M_{M}(M-m) . \tag{5.21}
\end{equation*}
$$

\]

Now-, recall that

$$
\begin{equation*}
t=\epsilon_{1}+\epsilon_{2}+\epsilon_{3} \tag{5.22}
\end{equation*}
$$

and note that if $\epsilon \rightarrow 0$ then also $\epsilon^{j} \rightarrow 0$, because $0<c^{j} \leq c$; therefore, by letting e lrace a sequence tending to zero, our completely mixed stratcgies will converge to V.

It follows from (5.11), (5.13) and (5.11), that (5.20) will be satisfied if

$$
\begin{equation*}
\epsilon_{1}^{q-3} \geq \frac{M-m}{a}\left[w\left(\left(\epsilon_{2}\right)^{2}+\epsilon_{3}\right)+|S|\left(\epsilon_{2}+\epsilon_{3}\right)\right] . \tag{5.23}
\end{equation*}
$$

This inequality car certainly be maintained for all j, by leting ϵ_{1} be near envugh to ϵ. Having fixed ε_{1} sufficiently near f_{4} we are still free to chonse ϵ_{2} and ε_{8}, as long as their sum remains constant (namely, $\epsilon-\epsilon_{1}$).

It follows from (5.12), (5.14) and the fact that $r+s>0$, that (5.21) will be satislied if $Q_{2}{ }^{\prime} s$ exist $^{3 \mathrm{~s}}$ and

$$
\begin{equation*}
\left(\epsilon_{1}\right)^{p-2} \geq(M-m) \frac{w|S|}{d(r+s)}\left(\frac{\epsilon_{3}}{f_{2}}+\epsilon_{2}\right) \tag{5.24}
\end{equation*}
$$

where $d=\min \{b, c\}$.

To this end, for a fixed positive c, choose ϵ_{1} sufficiently ncar to c, so that $\epsilon_{2}+\epsilon_{3}$ bocomes so smafl that. for any choice of ε_{2};

$$
\begin{equation*}
\frac{1}{2}\left(c_{1}\right)^{n-2} \geq(M-m) \frac{w|S|}{d(r+s)} \epsilon_{2} \tag{5.25}
\end{equation*}
$$

[^24]Haring fixed also ϵ_{1}, choose ϵ_{2} suliciently uear to $\epsilon-\epsilon_{1}$, withat ϵ_{3} beromes so small that also

$$
\begin{equation*}
\frac{1}{2}\left(\epsilon_{1}\right)^{q-2} \geq(M-m) \frac{u|S|}{d(r+s)} \frac{\epsilon_{3}}{\epsilon_{2}} . \tag{5.26}
\end{equation*}
$$

Adding (5.25) and (5.26) yields (5.24).

We have therefore proved that for any preitive 4 we can chonse $\epsilon_{1}, \epsilon_{2}$ and ϵ_{3} in such a way that V_{i} will be a best reply to σ_{i}, uniformly for all i in F^{0}. Letting $\epsilon \rightarrow 0$ concludes the proof. -

Proposition 5.1 taises two intereating questions:
(1) What conditions guarantee that a generalized-partition equilibrium profile exists?
(2) Ls the existence of a generalived-equilibrium-parlition necessary for the existonce of pureatrategy perfect equilibritu?

We answer the second question segatively, by the following example:

Examople 5.2. The population consists of:

$$
F^{0}=\{\mathrm{I}, 2\}, \quad C^{0}=\{a, b\}
$$

There is only one period; $k=1$. The utilities of the founders are:

$$
\begin{array}{llll}
u_{1}(0)=2, & u_{1}(\{a\})=3, & u_{1}(\{b\})=4, & u_{1}(\{a, b\})=1, \\
u_{8}(\rho)=4, & u_{3}(\{a])=2, & u_{2}(\{d\})=1, & u_{2}(\{a, b\})=3 .
\end{array}
$$

The payoff matrix is given $h \gamma^{37}$

	θ	${ }^{1}$	b	ab
0	2	3	1	1
	4	2	1	3
a	3	3	1	1
	2	2	3	3
b	4	1	4	1
	1	3	1	3
$a b$	1	1	1	1
	3	3	3	3

[^25]In this example the pure equilibriam profiles are $(\{a\},\{a, b\}\},\{b\},\{a, b\})$ and $(\{a, b\},\{a, b\})$. None of them is a generadized-equilibrium-partition, nevertholess, ($\{a\} ;\{a, b\}$) and ($\{b\},\{a, b\}$) are purfect equilibrium profiles. ${ }^{38}$ This shows that Proposilian 5.1 does not yield necessary conditions. On the other hand, Example 3.1 shows that voting schemes exist that do not have any pure-strategy perfect equilibrium. Providing a incersary and sullicient condition for the existence of purc-strategy perfect equilitriute in a 1 -stage game remains an npon question.

The next example will show that the requirement that the game is generic is needed for Propusition 5.1 to hold.

Example 5.3. The population is:

$$
P^{n}=\{1 ; 2\}, \quad C^{0}=\{a, b, x, y\}
$$

There is only one periad; $k=1$. The ulilities of the founders are:

$$
\begin{array}{lllll}
u_{1}(b)=3 ; & u_{1}(\{a\})=4 ; & u_{1}(\{b\})=2 ; & u_{1}(\{a, b\})=1 ; & u_{1}(S)=0, \text { otherwisc. } \\
u_{2}(b)=4 ; & u_{2}(\{a\})=1 ; & u_{2}(\{b\})=3 ; & u_{2}(\{a, b\})=2 ; & u_{2}(S)=0, \text { otherwise. }
\end{array}
$$

Founder 1 voting x and Founder 2 voting y is a generabized-partition-equilibrium profile but the game is not generic. Eliminating all weakly dominated pure strategies, which cannot be employed in a perfect equilibrium profice leaves us with the purestralegy profies $(0,0),(0,\{n\}),(\{n\}, 0)$ and $\left(\{a\}_{1}\{b\}\right)$, none o[which is even an efuilibrinm profile. This shows that requiring genericity is needed in Proposition 5.1.

An intereatiug application of Proposilion 5.1 is the following:

[^26]Theorem 5.4. Let Γ be a gsme representiug a 2 -stage generic voting schcme, whose utijities obey additivity across stages and additivity within each stage (Assumption 8b). Under these conditions, Γ has a porfect equilibrium in pure strategies.

Proof. Any perfect equilibrium profile for Γ must specify for each subgame of the second stage a profile under which each voter votes precisely for the set of his friends (who are not already in the society). This is a perfect equilibrium of the subgame (Section 2, case $k=1$) and uniquc, by genericity. With this understanding, we can onnstruct a l-stage game $\Gamma^{\mathbf{1}}$ as was done in Section 4. 'Lhe proof will be concluded if we show that Γ^{1} has a puic-strakegy perfect equilibrinm, as the rombination of this strategy with the continuation is a perfect strategys for Γ. To achieve that, it is sufficient, by Proposition 5.1, to exhibit a generalized-pactition equilibrium profile for L^{-1}. This we are about to do by a construcion under which voters add candidates to the society piecewise: There will be a variable set of candidates, called a curremt set, that grows, or atays pate, as the voters add to in during the construction, until it eventually becomes the outcome for Stage 1, as well as an outcome of Γ^{1}. We intpoduce the following terminology: Let A be a current set of candidates. We say that x, possibly ompty, set of caldidates taken from $C^{0}(A$, is optimal for woter i w.r.t. A, and denoted $X_{i}(A)$, if it is the best set of candidates that i could add to A, so as to increase his utility from the two stages. Note that $X_{i}(1)$ cannot contain enemies of , since such candidales are encmiss, and can only contribute more enemies at Slage 2. (The friends of \boldsymbol{i} will be bronght in anyhow by i at. Stage 2.) In symbols, $X_{i}(A)$ is characterized by

$$
\begin{align*}
& w_{i}\left(A \cup X_{i}(A)\right)+w_{i}\left(\mathrm{en}_{i}\left(F^{0} \cup A \cup \operatorname{fr}\left(F^{0} \cup A \cup X_{i}(A)\right)\right)\right) \geq \\
& w_{i}(A \cup B)+w_{i}\left(\mathrm{en}_{i}\left(F^{0} \cup A \cup\left[r\left(F^{0} \cup A \cup B\right)\right)\right), \quad \text { all } B \subseteq \mathrm{fr}_{i}\left(C^{0} \backslash A\right) .\right. \tag{5.27}
\end{align*}
$$

(In this calculation friends of \dot{i} al. the second stage are omitted from boitt sides of each inequality.)

$$
\text { Here, } w_{i}(T):=\sum_{t \in T} w_{i}(t), \operatorname{fr}_{i}(S):=\left\{j: j \in \operatorname{fr}(\{) \cap S\}, \operatorname{en}_{i}(S):=\{j: j \in \operatorname{nn}(i) \cap S\}\right. \text { and }
$$

[^27]$\operatorname{Ir}(B):=\{\ell ; \ell \in[r(j)$ Jor some j in $B\}$. Sums ower the empty set are considered equal to zero. By genericity, the set $X_{i}(A)$ is unique.

Tee comstruction:

Starting with a chirent sut $A=0$, a referee approaches the voters repeatedty, one by one, and auggests to them wadd candidates to the current sel. Each approached voter inddy $X_{i}(A)$ and the set $A \cup X_{i}(A)$ beconnes a dew 'current set' A. 'The referee contiaus to approach the voters, perhaje approarhing a voter several times, taking care not to ignome voters whose optimal addicion ia not empty. This assurcs that after a finite number of approaches, there comes a situation when all optimal sets w.r.t. the current. A sure emply for all volers. At this the construrtion ends. This determines a purestrategy profile $\left\{P_{j}\right\}_{j \in F v}$, where P_{j} is the set consisting of all the members that voter j added along the construction.

It follows lrom the construction, that $\left\{P_{j}\right\}_{j \in F^{u}}$ is a generalized partition of $S:=\cup_{j \in F^{0}} P_{j}$. It remains to show that it is an equilibrium profile for Γ^{1}. To this end we require a lemma, which unfortunately is not truc if $k>2$:

Lemma 5.5. Assume the conditions and notations of Theorem 5.4. Let A and B be two sets of candidates, $A \subseteq B$. Let C be a set of friends of a voter i satisfying $C \cap B=\square$. If $A \cup C \succ_{;}$A then $B \cup C \succ_{i} B$.

Proof. From the data it foliows that the total weight of i from C exceeds the absolute value of the total weight of the new enemies that C bricge al Stage 2.40 When C is added to B he brings the same number of friends, namely $\mid C$, and no new enemies. Perlaps even less - the previous ones that happen to the in $B \backslash A$.

[^28](Continuation of the proof of Theorem 5.4). If $\left(P_{i}\right)_{j_{\in F}}$ is not an equilibrium profile, then a voter i can benefit from a deviation. A devialiun means that lie deletes a set f of candidates from his vote P_{j} and adds a set Q of candidates not in $S .{ }^{\prime \prime}$ At least one of these sets is not empty. The set T, if not em jty, is a union of nomenpty sets $T_{i}, T_{2}, \ldots T_{r}$, which are, respectively, subsets of his votes $P_{i}^{1}, P_{i}^{2}, \ldots, P_{i}^{r}$ taken when i was approached at times that we enumerate chronologically $1,2 \ldots, T$. Denote by $S_{1}, S_{2}, \ldots, S_{\text {, the }}$ the current sets at these times after his addition. Consider a hypothetical sequence when all founders wote as in the constiuction except that agent i voles $I_{i}^{1} \backslash T_{1}$ at time 1_{1} $F_{i}^{\mathcal{e}} \backslash\left(T_{1} \cup T_{2}\right)$ at lime $2, \ldots, P_{i} \backslash T$ at tirne r and each time he also adds the candidates of Q. The end of this sequence is the deviation, which, as we assumed, benefiled player i. We now modify this sequence in such an way that player if will continue to benefit and at least as much. To this end, add 1 ' to the hypothetical vote of voter i at all times, starting from time 1 . This will benefit him ar, time 1. Indeed, he would benefit if the current get were $S_{1} \backslash T_{1}$ becauze $X_{i}\left(S_{1}, F_{1}\right)=S_{1}$ is the unique optimal response and so, by Lemma 5.5 , he would benefit by adding T_{1} to $\left(S_{\perp} \backslash T_{1}\right) \cup Q$. For Itse same reason i would benefit by adding T_{1} at every part of the bypothetical sequence, since
 adding T_{1} we are in an improved deviation that starts at time 2. We make a. similar modification and continue for r times. Eventually, we arrive at an improved deviation at which only Q is added. But this is imporsible, since the original construction ended when no voter could bencficially add membera outside the current set. The contradiction shows that we arc indoed al eyuibibrium. E

The construction in the above proot is not specific about the order in which the referee approaches Whe voters. We are going to show that althongh different orders yield different equilibrium profiles. the outcome S remains the same. Therefore, the petfect equilibrium profile that is generated as

[^29]Nescribed in Propasition 3.1 is the same, regardess of the order of approaxh.

Lemma 5.6. If $A \subseteq B \subseteq C^{0}$, then $A \cup X_{i}(A) \subseteq B \cup X_{i}(B)$ for every agent i in F^{U}.

Proof. Assume negatively, that for some i in $F_{0}, D:=\left(A \cup X_{i}(A)\right) \backslash\left(B \cup X_{i}(B)\right) \neq \mathscr{F}$. By optimality of $X_{i}(A)$ and gencricity of $\Gamma_{,}$it follows from (5.27), replacing B by $X_{i}(A) \backslash D_{1}$ and noting that $D \cap A=0$, that

$$
\begin{align*}
& w_{i}(D)+w_{i}\left(\operatorname{UNI}_{i}\left(F^{0} \cup A \cup \operatorname{lr}\left(Y^{n} \cup A \cup X_{i}(A)\right)\right)\right)-w_{i}\left(\operatorname{en}_{i}\left[F^{0} \cup A \cup \operatorname{fr}\left(F^{0} \cup A \cup\left(X_{i}(A) \backslash D\right)\right)\right]\right)= \\
& w_{i}(D)+w_{i}\left(t \|_{i}\left(f r(D) \backslash \operatorname{tr}\left(F^{0} \cup A \cup\left(X_{i}(A) \backslash D\right)\right)\right)\right)>0 . \tag{5.28}
\end{align*}
$$

Uwing (5.27) onke more, replacing $A, X_{i}(A), B$ by $B, X_{i}(B), X_{i}(B) \cup D$, respectively, we obtain:

$$
\begin{equation*}
w_{i}(D)+w_{i}\left(\operatorname{en} n_{i}\left(\operatorname{fr}(D) \backslash \operatorname{fr}^{(}\left(F^{0} \cup B \cup X_{i}(B)\right)\right)\right)<0 . \tag{5.29}
\end{equation*}
$$

However, $\left(A \cup X_{i}(A)\right) \backslash D \subseteq B \cup X_{i}(B)$, and enemies of i carry negative utilities: therefore, the left side of ($\mathbf{5} .29$) is not smaller than the left side of (5.28) - a contradiction.

Corollary 5.7. Changimg the order of the referee's approaches leads to the sarue final see S, although the accrial votrs of the players may be different.

Proof. Let $\mathfrak{U}=T^{0}, T^{\prime}, \ldots, T^{*}=T$ be the sequence of 'current sets' generated by a different order of approaches. We shall whow that $T^{m} \subseteq S$ for every m and therefore $T \subseteq S$. Reversing the roles of S and T one gets $S \subseteq T$ and this concludes the proof. Proceed by induction: Certainly $T^{0} \subseteq S$. Suppose $T^{m-1} \subseteq S$ and $T^{t n} \nsubseteq S$. Then, some i in F^{0} has $X_{i}\left(T^{m-1}\right) \nsubseteq S$. Thus, a candidate is exists in $X_{i}\left(T^{m-1}\right)$, a $\& S$. From Lemtad $5.5_{1} a \in X_{i}\left(T^{m-1}\right) \subseteq X_{i}(S)$, which coutradicte the fact that the construction terminates when $\chi_{i}(5)=0$ for all 8 . -

One may now ask whether a perfect equilibrium profile is always unique under the conditions of Theorem 5.4. The following example settles this question negatively.

Example 5.8. The set of founders is $F^{0}=\{1,2\}$. The set of candidates is $C^{0}=\{a, b, c\} . k=2$ and we assume pure friendstip and enmity (Assumption 8a). $\mathrm{fr}_{\mathrm{r}}(1)=\{a\}, \mathrm{fr}(2)=\left\{\begin{array}{l}\mathrm{a}\end{array} \mathrm{f}, \mathrm{fr}(\mathrm{a})=\right.$ $\mathrm{fr}(0)=\{c\}$. The construction in Theorem 5.4 leads to $S=0$. However, it can be checked that 1 and 2 voting for their friends al all stages and a and b vote for Cleir lriend at Stage 2 is also a perfect equilibrium profile.

T* is interesting to find conditions that guarantee that a pure-atrategy gencvidixed partition equilihrium profile always existe. For a while we thought that this will always be the case if additivily ${ }^{\text {a }}$ holds within a atage and across stages (Asaumption 8bj, as Cheorem 5.1 seems to indicate. The Following cxample shows that this is not true and: moreover, it may well be that no pure-strategy perfect expuilibriam exists in this case.

Example 5.9. The population is:

$$
F^{0}=\{1,2\}, \quad C^{0}=\left\{a, b, x_{2}, x_{2}: m_{1}, m_{2}, y\right\}
$$

The number of periods is $k=3$. The weighte of each member of the population from bring with each other member, per period, are:

$$
\begin{aligned}
& w_{1}(\mathfrak{a})=w_{1}(b)=100, \quad w_{1}\left(x_{1}\right)=w_{1}\left(x_{2}\right)=-200, \\
& w_{2}(\mathfrak{a})=500, \quad w_{3}(b)=100, \quad w_{2}\left(m_{1}\right)=-600, \quad w_{2}\left(m_{2}\right)=-200, \\
& w_{a}\left(x_{1}\right)=w_{a}\left(x_{2}\right)=w_{a}\left(m_{1}\right)=100, \quad w_{1}(y)=-200, \\
& w_{b}\left(x_{2}\right)=w_{b}\left(m_{2}\right)=100, \\
& w_{m_{1}}(y)=1, \\
& w_{m_{2}}(y)=1 .
\end{aligned}
$$

All other weights are equal to -1 . Utilities are calculatex by (2.3).

The construction of the unique perfect equilibrium prafile will be carried by backwards induction, starting from the thind stage and working backwards towards the first stage. We shall demonstrake that it must employ a mived-strategy profile.

The third and last stage. [n any perfect equilibrium, at the last stage any memher of the society (elentuls of F^{2}) invites exaculy the sel or his friends lial are not members of the society.

Thus, ${ }^{42} 1$ and 2 iuvile a and $b_{i} a$ invites $x_{1} ; x_{2}$ and $m_{1} ; b$ inviles x_{2} and $m_{2} ; m_{1}$ juvites y and m_{3} invites y.

The second stage. Based on their knowledge of what will happen in the last stage for any configuration of P^{2}; the invitations at stage two in any perfect equilibrium can be calculatod by using deletion of dominated strategies.

Agents m_{1} and m_{2} will invite y. Agent b will invite z_{2} and m_{2}. Agent a will invite r_{1} and x_{2}, and will also invite πm_{1} if \boldsymbol{b} belongs to F^{1} (since in this case y will be invited at stage 3 by m_{2} who is invited by b). If a is in F^{1}, then \perp will invite b (since in this case both x_{1} and r_{2} will be invited by a at stage 3). If a is not in F^{1} then no whe will invite a and therefore 1 will not invite b if a is nat in F^{1}.

The First Stage, Based on the above continuations, there are four possible configurations to consider for the first stage. These constitute all the subsents of $\{a, b\}$. Neicher 1 nor 2 can gain by inviling any of the othems.

If the empty set is invited at stage 1 ($\mathrm{t} . \mathrm{e} . F^{1}=\{1,2\}$), then based on the previous analysis, the continuation will have $F^{2}=\{1,2\}, P^{s}=\{1,2, a, b\}$. If only a is invited at stage 1 , then the stream will be $F^{1}=\{1,2, a\}, F^{2}=\left\{1,2, a, b, x_{1}, x_{2}\right\}, F^{3}=\left\{1,2, a_{1} b, x_{1}, x_{2}, m_{1}, m_{2}\right\}$.

[^30]If anly b is invited at stage 1 , then the stream will be $F^{1}=\{1,2, b\}, F^{2}=\left\{1,2, b, x_{2}, m_{2}\right\}, F^{3}=$ $\left\{1,2, a, b, x_{2}, m_{2}, y\right\}$. And if both a and b are inviled at atage 1 ; the stream will be $F^{1}=\{1,2, a, b\}$, $F^{2}=\left\{1,2, a_{1} b_{1} x_{1}, x_{2}, m_{1}, m_{2}\right\}, F^{3}=\left\{1,2, m_{1}, b_{1}, x_{1}, x_{2}, m_{1}, m_{2}, y\right\}$.

Using the data ahour the weights, we can calculate the payoff Ior the possible actions in the flrst stage. The row player is player 1 and the column player is player 2.

	0	a	b	a
0	200	-302	-3	$\bigcirc 205$
	600	896	397	195
a	-302	-302	-205	-205
	896	836	195	195
b	-3	-205	-3	-205
	397	105	397	195
ab	-20.5	-205	-205	-205
	195	195	195	195

Since duminated blralegies are not used in any perfect cquilibrium of a norimal-form ganse, we delete dominated strategies for the two players. We are left wilh Ite follewing normal-form payoff matrix for the first stage:

Clearly, there is no purestrategy perfect equilibrium, and the only perfect equilibrium with pure moves at scagies 2 and 3 consists of using mixed strategies in the first stage - Player 1 voling for hoth the empty set and $\{b\}$ with positive probabilitics, and Player 2 voling for both the empty set and $\{a\}$ with positive probabilities.

This example demonstrates that assumption 8b or Section 2 is not enougl to guaranten the existence of a pure-strategy perfect equilibrium.

We conclude this section by extending Proposition 5.I to several-stage voting schemes.

Theorem 5.11. Let Γ be a game representing a generic voting scheme, obeying additivity across stages (Assumption 8c). If one can work backwards on all subyawes, as described in Section 4, finding sets of candidates obeying the conditions of Proposition 5.1, one abtains a perfect equilibrium for Γ in pura atrategies.

Proof, Let σ be the strategy profile constructed as in the theorem. Based on σ we can construct 1-stage games at every stant of a subgame, as was done for Γ^{1} at the beginning of Section 4 . We then construct a test sequence for every 1 -stage game that converges to the restriction ond for that 1-stage game, such that σ_{i} is a best reply for each element of the sequence, for each woter. This can be done as shown constructively in the prof of Propasition 5.1. Note that by genericity, the best reply is unique. Moreover, it continues to be a best reply even if the payoff wectors at the endpoints are slightly modified. Such modifications ane, in fact, created from the test sequences of the games at the next stages.

To construct a test sequence far the globad game Γ, cut from each l-shage test sepuence enaugh elements so that, together, the remaining parts will cause pertubations so small that $\sigma_{i,}$ for earh i, will remain a best reply also for the perturbed payoff vectors. The existence of such a scquence shows that σ is a perfect enuilibritum point.

6. Appendix

In this appendix we shall discuss the merits and limitations of the requirement that the agents use only history-independent strategies. This assumption certainly simplifies our analysis. One can try and claim that it is appropriate if ballots are secret, but this is not good enough since part of the history is known by watching who was elected at each stage.

On the face of it this requirement looks innocuous: for example, you come to stage 3 and have 5 stages to go. You know who are the voters and who are the candidates. You have all information concerning priorities of each agent. You have to make your choice. Why should you care how you came to this situation? Isn't it spilt milk?

Well, - not always!

If one is interested only in equilibrium outcomes that can be achieved in pure strategies, Theorem 6.1 below shows that the same stream of members can be obtained as an equilibrium outcome using only historyindependent pure-strategy profiles. Example 6.2 shows that this is not the case when mixed strategies are being considered.

One can claim that limiting the agents to history-independent pure-strategy equilibrium profile is not a good restriction, if an agent can profit by deviating to a mixed, history-dependent strategy. Theorem 6.3 proves that this cannot happen.

Theorem 6.1. Any equilibrium outcome that can be achieved in pure-strategy [subgame-perfect] profiles can also be achieved with pure-strategy history-independent [subgame-perfect] profiles.

Proof. If there is only one original founder, then, as long as he votes for nobody, we can regard his votes as history-independent since he can choose his votes without looking at what happened.

Sh, we can assume, without loss of generality, that there are at least iwo original founders. Let $\sigma=\left(\sigma_{i}\right)_{i \in N}$ be a Nash oquilibrium profile obtained by pure strategies. Let $\tau=\left(\tau_{i}\right)_{i \in N}$ be a history-independcut strategy profile detined by

$$
\tau_{i}^{t}\left(t, F^{t-1}\right)=\left\{\begin{array}{l}
\sigma_{i}^{t}\left(\beta^{t}(\sigma)\right), \quad \text { if } F^{t-1}=F^{4-1}(\sigma)_{1} \tag{0.1}\\
N, \quad \text { otherwise. }
\end{array}\right.
$$

Here, $h^{\dagger}(\sigma)=\left\{F^{0}{ }_{1} F^{1}(\sigma), \ldots, F^{t-1}(\sigma)\right\}$ and $\sigma_{i}^{t}\left(h^{t}(\sigma)\right)$ is the vote cast by agent i at stage $t_{\text {, given }}$ the history u_{p} to that stage.

The path followed by profile r is the same as the ane followed by σ, hence τ yields the same stream of members as σ_{1} and therefore the same utility outcome: It remains to show that \boldsymbol{r} is o Nws equilibrium. Assume that agent i can profit by deviating alone from rif 2 using strategy $\tau_{;}^{\prime}$. Ier. to be the first stage in which $r_{i}^{\prime} \neq r_{i}$. Since there are at least two founders, r^{\prime} generates the stream $\left(F^{0}, F^{2}(\sigma), \ldots, F^{t_{0}}\left\{\sigma_{-i} \mid f_{i}^{\prime t_{0}}\right), N, \ldots, N\right)$. Piayer i can ueviake also irom σ and obtain the same stream of members. Indeurl, all he has to do is deviale from stage tot vating as in τ^{\prime} at that stage and voting N afterwards. This will yield hirn a higher utility, contrary to the fact that σ was an equilibrium profile.

If σ is also subgame-perfect then so is τ and this completes the proof. .

Note that a similar theorem may not lold when we deal with oher refinements. For example, in general T, as constructed above, will not be a perfect equilibrium, even if σ was perfect.

Uufortunately, Theorem 6.1 does not hold, in generah, if σ is a mixed strategy equilibrium profile. The next example will demomartrate this fact.

Example 6.2. The population is:

$$
F^{0}=\{1,2\}, \quad C^{0}=\left\{a_{1}, x_{2}, x_{1}, x_{2}, z\right\}
$$

The number of Stages is $k=4$. The utilities of each member obey additivity within cach stage and across slages (Assumption 8b). 'I'he weight functions are:

$$
\begin{array}{llll}
w_{1}\left(a_{1}\right)=0, & w_{1}\left(a_{2}\right)=-1, & w_{1}\left(x_{1}\right)=10, & w_{1}\left(x_{2}\right)=-10, \\
w_{1}(z)=-100 \\
w_{2}\left(a_{1}\right)=-1, & w_{2}\left(a_{2}\right)=0, & w_{2}\left(x_{1}\right)=-10, & w_{2}\left(z_{2}\right)=10, \\
w_{2}(z)=-100 \\
w_{a_{1}}\left(x_{1}\right)=-z_{1}, & w_{a_{2}}\left(I_{1}\right)=-2 . &
\end{array}
$$

All ather utilities not given above are equal to -1 .

Consider the following strategy profile.

At Stage 1, Playcr 1 randomizes (with oqual probabilitics) between $\left\{a_{1}\right\}$ and ${ }_{3}$ while player 2 randomizes (with equal probabilities) hetween $\left\{\omega_{2}\right\}$ and $\emptyset_{\text {, }}$

At Stage 2, all members vote for $\left\{a_{1}, a_{2}\right\}$.

At Stage 3, if $\left\{F^{1} \mid\right.$ was even, then all members invite $\left\{x_{1}\right\}$. Otherwise, they all invite $\left\{x_{2}\right\}$.

At Stage 1 , all invite their own friends.

If there is any detectable detiation from this path before Stage 4 , all members invite z and their own friends immediately after the deviation is detected.

This is a. Nash equilibrium. Neither founder can gain with an undetectable deviation at the first stage, and a detectable deviation causes a loss. Any deviation that makes a difference at Stages 2 or 3 is detectable and causes a loss. Them are no profitahl deviations at the last stage. The strategies are history-dependent, as if $F^{2}=\left\{a_{1}, a_{2}\right\}$, then members of F^{2} have different actions for Stage 3: depending on whether the number of members in $F^{\mathbf{1}}$ was even or odd.

The ontrome of the equilitrinm is ane of the four following streans, each occuring with equad
probability:

$$
\begin{aligned}
& \left(F^{1}, \ldots, F^{1}\right)=\left(\emptyset_{1}\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{2}, x_{1}\right\},\left\{a_{1}, a_{2}, x_{1}, x_{2}\right\}\right. \\
& \left(F^{1}, \ldots, F^{*}\right)=\left(\left\{a_{1}\right\},\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{2}, x_{2}\right\},\left\{a_{1}, a_{2}, x_{1}, x_{2}\right\}\right. \\
& \left(F^{\mathbf{l}}, \ldots, F^{*}\right)=\left(\left\{a_{2}\right\},\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{2}, x_{2}\right\},\left\{a_{1}, a_{2}, x_{1}, x_{2}\right\}\right. \\
& \left(F^{\mathbf{1}}, \ldots, F^{4}\right)=\left(\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{4}, x_{1}\right\},\left\{a_{1}, a_{2}, x_{1}, a_{2}\right\}\right.
\end{aligned}
$$

Nole that at Slage 3 either x_{1} or ε_{2} is inviterl, depending on the cardinality of F^{1}, However, since F^{2} is the same for each of the four streams, history-independent strategy cannot specify different aclions for the third stage. Therefore, this outcome, which was achicved in equilibrium with histary-dependent strategies, cannot be supported with histary-independent strategies.

Restricting the strategy spare to pure history-independent stratngy profiles raises the doubt whether equilibsium points in this space might cease to be in equilibrium when one exteads the strategy space and allows for mixed history-independent strategies. That this is not the case follows from the folluwing theorem:

Theorem 6.3. Set $\overline{\mathrm{I}}$ be a gatae representing a voting scheme in which the players are allowed to select only purc history-indopendent strategies. Let σ be an equilibrium profile for this game. Leet Γ be a game obtained from Γ by extending the strategy space and allowing ruxed xad historydependent itrategies. Undcr these conditions, σ is still an equithbrium profile for Γ.

Proof: Suppose player i can deviate from σ_{i} in Γ, against σ_{-i}. Then, he can benefit by choosing an appropriate purestrabegy best reply $\tau_{\text {i }}$. This strategy may be history-dependent, so we define another strategy τ_{i}^{\prime} hy

$$
\tau_{i}^{\prime}\left(t, F^{t-1}\right)=\left\{\begin{array}{ll}
\tau_{i}\left(t, h^{t}\left(\sigma_{-i}, \tau_{i}\right)\right), \tag{6.3}\\
0, & \text { ollerwise. }
\end{array} \quad \text { if } F^{t-1}=F^{t-1}\left(\sigma_{-i}, \tau_{i}\right)_{t}\right.
$$

Strategy r_{i}^{\prime} is pure, history-independent, because it selects the same sel at atage t whenever the set of voters is $F^{t-1}\left(\sigma_{-i}, T_{i}\right)$ and selects the same (emply set), otherwise. Moreover, the path under
$\left(\sigma_{-i}, r_{i}^{\prime}\right)$ coincides with the path under $\left(\sigma_{-i}, \tau_{i}\right)_{\text {, }}$ thas yielding the same stream of members. We have proved that there exists a pure, history-independent strategy τ_{i}^{\prime} that yields player i more tlan σ_{i} against $\sigma_{-m i}$. This contradicts the fact that σ was ant equitibrium point in $\hat{\Gamma}$. -

Referbnces

 Armale of Malhematics, Sindy 40, Frioceten Uaiversity Preas, Princeton, N. J., 1959, pp, 287304.

Kohlberg, E and J. F. Mertens, Dit the stabitith of equifitria, Econumetrica 54 (1986), 100s-1030.
Kohn, H. W., Extentave gomes and the probiem of information, Contributions to Game Theory I] (Il. W, Kuha aid W. Tuckerr, eds.). Anulus of Mathematics Studipg, 28, Princeton linipersity Preas: Princeton, N.t, 195̆3, pp. 193-216.
 of Guane Theory 4 (1975), 25-55.

[^0]: ${ }^{1}$ i.e., equilibria that have the additional property that no deviator can benefit if the set of deviators does not include the set of all voters at the start of a deviation.

[^1]: ${ }^{3} \mathrm{O}_{\text {ne }}$ can thint of complicated priontides on events that may evan be concealed. For example, a votor might not like

[^2]: an agent j, if he knew that agent p also voted for j, but otherwise he might have loved to have j in the society. Perhaps he does not even know who elected j. We shall not consider such complications in this paper.
 ${ }^{3}$ Actually, if ballots are not secrets, histories may be more complicated than simply past stream of members. They

[^3]: may iuclude information such as whu voled for whom: and when. In this pajer we shall nol emplay such histaries except, when we show mader what conditions one can do wilhont them (2 heorems 6.1 and 6.3).
 SOr rather ou the namber of stages left.
 "Thus, also on the eet of candidates lefl.
 ${ }^{8}$ As mentioned previously, often this sequence may the nuknown, or partly miknown to the ageats.
 ${ }^{7}$ In the appendix, we shall discuss the mecits and the limitalions of this assmaption. In particalar: we prove there that any equilibrium ontcome that can be obtainul by pure atrategiss can alzo be obtained by histoty-fudependent pury strategies. We shall alas show that history-independent purestrategy equilibria int rubuat; namety, remain equilibris even if we allow responseg that employ mixod and history-dependent stratenies. Howavar, when mixed strategies ate feasible, the history-dependent sel of equilihriun outconns is definitely richen.
 ${ }^{3}$ Or a probability distribution on such sets, if we ate interested in behavioral stratgies. We find it wetal w deatere
 which may be different from the players In a different stage game. Dere, the supertcript t is just a part of the name of the stralegy, σ_{i}^{t} is a fuaction of two mariables, one of which is t, becanee the same player may act differently at different stages even if he faces the same sots of voters and candidates. Moraoser, $\sigma_{i}^{f}\left(\tau, F^{j-1}\right), \tau \geq t$ would be his action when he reaches stage f and the set of yoters is $\boldsymbol{F}^{\boldsymbol{r}-1}$.

[^4]: This, of course involves wore assumplions on the biuary prierity relations.
 society lagether with the original founders F^{6}. "lhe reader will hate no dufficulty in deciding to which normabzation we refer in exth instance.

[^5]: ${ }^{11}$ We decided to require a positive ϵ in order to express the fact that, other things being equal, the members would

[^6]: per atage") and 'ntility of a stream'. This is jugtifised becsusc of assenmption (2.4) below.

[^7]: ${ }^{13}$ There are two ways of looking at it. On the one hand, the voters at a stage make their own decisions. They can even dictate to the elected candidates how to vote in the future, threatening not to bring them into the society if no agreement is reached. On the other hand they also have to take into account that the people who are going to participate are pursuing their own interests and will not abide by the agreement if they can benefit by violating it.

[^8]: ${ }^{14}$ This was first observed by Hans Reijnierse (private communication).
 ${ }^{15}$ Assuming that ϵ is small enough.

[^9]: ${ }^{t t_{1}}(\{a, b\})$.
 ${ }^{17}$ if; (S) stands for the utily of Founder ifor $S \cup\{1,2\}$. A similar conveation will be uaed throughout.

[^10]: ${ }^{18}$.Another wariant, in which the deviator is punishes unly by the other person, in case of deviation, is not anbgameperfect but je more convincing: why shonkd the deviatot agree, and abide by pualsbixg himself? This is arother masifestation of the known difenma: Why should one trust a promist of a person, who alroady proved that he does not keep his pronises, bucause he deviated in the first stage.

[^11]: ${ }^{19}$ Any "tremble" can be observed only in the last stage when it is still to one's advantage to bring all his friends.

[^12]: ${ }^{20}$ We are maing the fact that, because \& is positive (Assumption Ba), a vutur will prufer wopatpone a vote for a friend if this friend will bring an encmy at dle next stage. He will gain an eby postponing one stage.

[^13]: y_{1} will hring j_{2} (an enemy of x_{1}) at the last atage.

[^14]: ${ }^{22}$ This construction can be extended also to cases whell tie continuations are neithe pere not history-independent. Most results in this section, however, will not be true in such rases.
 ${ }^{28}$ This biatenent is tuue also if the profile is not inishry-imdependent, and not prie.

[^15]: ${ }^{24}$ One can question how safe is this agrecment between $]$ and a. Obvioutsy, a desires not to honor the agreement. This, fowower, is irfolerant to the claim that 1 and a can both gain if bey follow this agrement.

[^16]: ${ }^{2}$ We are creaxing thexe 1-ylage games in a way similar to the way we crented Γ^{2} 㫙, the begianing of thia sexion.

[^17]: ${ }^{26}$ We are involing additicity acrobs viages.
 ${ }^{37}$ By Theorem 6.1 we can drop the thistory-independant' requirement from this 3 tatement.
 ${ }^{38}$ Such an S always existe, for example $S=0^{0}$.

[^18]: ${ }^{30}$ When we cunstructed Γ^{1}.

[^19]: ${ }^{31}$ We are invoking additivity across slages.

[^20]: ${ }^{32}$ Here, >-; means: 'T'referred by \mathbf{y}^{\prime}.

[^21]: ${ }^{33}$ If $\left|C^{0}\right|=1$, and $\left|F^{n}\right|>1$, then all the plajury vole their preferted ontromes ont of the $p a i r\left\{0, C^{0}\right\}$. Since there are unly two possible oatcomes, voting for the more preferred ontiome against any strictly mixed strategy profle alwapg gives a higher probability of it oceunirg than voting for the lese preferred onc. This proves that woting for the moet preferred outcome is a perfect equilibriam. Other caseg are even simpler.

[^22]: ${ }^{34}$ Here we use property (2) of the proposition.

[^23]: ${ }^{35} \ln$ this case, the summation in (5.20) is zero.

[^24]: ${ }^{3}$ If no such q_{3} cxist, (5.81) heed not be satisfied.

[^25]: ${ }^{37}$ For simplicity we omit the curly brackets that denote zets.

[^26]: xiNote that ($\{0\},\{a, b\}$) can be ehiminated by xnccespive weak domination-

[^27]: ${ }^{39}$ - 4 proof for any k-stage game ir given in Therrem 5.10.

[^28]: ${ }^{4 n} \mathrm{Nancly}, w_{i}(C)+w_{f}\left(\operatorname{entr}_{i}\left(\operatorname{fr}\left(C, \operatorname{Cr}\left(F^{0} \cup A\right)\right)\right)\right)>0$.

[^29]:

[^30]: ${ }^{\text {4 }}$ Whe remind the reader that tho 'invitatione" are oseless if the invitirg agent is not a member of the soniety.

