Instituto Juan March

Centro de Estudios Avanzados en Ciencias Sociales (CEACS)
Juan March Institute

Center for Advanced Study in the Social Sciences (CEACS)

i

Voting for voters : a model of electoral evolution
Author(s):  Barbera, Salvador

Date 1998

Type Working Paper

Series Estudios = Working papers / Instituto Juan March de Estudios e Investigaciones,
Centro de Estudios Avanzados en Ciencias Sociales 1998/115

City: Madrid

Publisher: Centro de Estudios Avanzados en Ciencias Sociales

Your use of the CEACS Repository indicates your acceptance of individual author and/or other
copyright owners. Users may download and/or print one copy of any document(s) only for
academic research and teaching purposes.



VOTING FOR VOTERS: A MODEL OF
ELECTORAL EVOLUTION

Salvador Barbera

Estudio/Working Paper 1998/115
June 1998

Salvador Barbera is Professor of Economics at the Universidad Auténoma de Barcelona.
This paper, co-authored with Professor M. Maschler of the Hebrew University of
Jerusalem and Professor J. Shalev of the Université Catholique de Louvain, is based on a
series of four public conferences that Professor Barbera gave at the Juan March Institute
on 11, 13, 18 and 20 March 1997. The conferences were entitled, respectively,
“Estrategia y eleccion social”; “La agregacion de preferencias”; “Problemas dindmicos
en teorfa de la eleccion social”; and “Modelos formales de justicia distributiva”.



ABSTRACT

We model the decision problems faced by the members of societies whose new members
are determined by vote. We adopt a number of simplifying assumptions: the founders and
the candidates are fixed; the society operates for k periods and holds elections at the
beginning of each period; one vote is sufficient for admission, and voters can support as
many candidates as they wish; voters assess the value of the streams of agents with whom
they share the society, while they belong to it. In spite of these simplifications, we show
that interesting strategic behavior is implied by the dynamic structure of the problem: the
vote for friends may be postponed, and it may be advantageous to vote for enemies. We
discuss the existence of different types of equilibria in pure strategies and point out

interesting equilibria in mixed strategies.



1. Introduction

Human societies evolve, grow and shrink, as the result of exit and entry. We are interested in the evolution
of those societies where entry is regulated by the use of formal voting procedures: new members are

admitted only if they receive enough support from inside, according to well specified rules.

Clubs and learned societies are examples of human groups that fit our description exactly. Others may only
meet part of the features we require here. For example, parliaments are elected according to well specified
rules, but their size is fixed, while our focus will be on the forces that determine the growth or the
stagnation of groups. In other cases, entry and exit are the result of informal procedures, whose description
as voting rules might be too simplistic even as an approximation. Our model, thus, only applies to a

restricted set of societies.

Election rules are social constructs: they may come from an agreement among different founders, they may
reflect the will of a unique founder or they may be the result of successive amendments, but they must be
set purposely. Once the rules for election to a society are set, participants in the election are bound to
engage in strategic considerations that involve non-myopic behavior. In particular, voters cannot overlook
the fact that newly elected members will become voters in later elections: this may lead to postpone the
election of individually attractive candidates who might vote in unattractive ways, or to accelerate the
election of a poor candidate whose vote is needed. We are interested in the evolution of groups which
results from considerations of this type being made by rational agents under well specified voting rules. The
features we have emphasized should make it clear that electoral evolution is the result of nonmyopic

behavior which is quite typical to human societies.
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Since this paper is a first attempt at modeling such facts, we allow ourselves some strong simplifying
assumptions. The founders and the rules of election of a society are fixed in advance (we don’t explain why
they join to create the society or why they agree on these rules). The candidates to enter the society are
fixed as well (we don’t explain why they don’t try to create other societies, or any other process by which
eligible candidates could change from election to election). We assume that nobody leaves the society once
admitted (thus concentrating on entry and not on exit). We study finite horizon situations where members
of the society know at all times when it will be dissolved and voting takes place at a finite number of
periods (when in fact many societies operate under an uncertain horizon). We assume a specific voting
method, whereby each member can vote for as many candidates as he wishes, and it is enough for a
candidate to receive a vote in order to be admitted (this is the method of ‘voting by quota one’; many others
are worth considering). We postulate that agents’ preferences are defined over streams of members in the
society, and that they are additive across stages. Under these assumptions, we provide theorems on the
existence and the characteristics of different types of equilibria of the games generated in such dynamic
voting contexts. Although clearly restricted by our assumptions, these results bear witness to the abundance
of possibilities within our model.

In addition to general theorems, we also provide many examples, some of which reflect quite unexpected
phenomena. The simplicity of our model, when it comes to examples, becomes an asset: whatever
counterintuitive results we exhibit are robust, since they happen even in simple situations. For instance, we
shall prove that agents may want to vote for their enemies. This would not be surprising if they needed the
votes of others in order to advance their friends to membership. But it is quite striking under our extreme
assumption of vote by quota one, where each voter alone can assure his friends' admission! Also, many of
our examples postulate a very simple structure of preferences: each voter is assumed to classify candidates

as enemies or friends, and streams of elected members are valued as the sum of utilities derived from



elected friends — one unit per period — plus the sum of disutilities derived from having enemies elected —
essentially minus one per period. Revealing interesting strategic behavior under much simple preferences

reinforces our points.

Our closest reference is “Voting by Committees”, by Barbera, Sonnenschein and Zhou [1991], where the
question of electing members for a society is treated as a one period problem. That paper characterizes the
set of all strategy-proof mechanisms respecting the sovereignty of voters when their preferences over sets of
candidates satisfy one of two alternative restrictions, called additivity or separability: they are the methods
of voting by committees. We shall not describe the general class, but simply say that they contain an
interesting subclass of methods, which in addition to the preceding properties will also respect anonymity
and neutrality; i.e., will treat all voters and all candidates alike. This subclass consists of the methods based
on voting by quota: each agent can vote for as many candidates as he wishes, and all candidates who get at
least g votes are elected, where ¢ is fixed a priori. Our main interest in the present paper is on phenomena
that only arise when the society’s horizon is greater than one period, and this is why we have chosen to
work with multiperiod models whose one period version takes the form of voting by quota. Since these
methods are strategy-proof in their one shot version, we can be sure that whatever strategic behavior arises

when several periods are considered must have a dynamic source.

As already mentioned, our ambition is to study the evolution of societies who resort to voting as a means to
include or to exclude members. It has both a normative and a positive viewpoint. Many interesting
questions come to mind. Just to mention one topic on the descriptive side, we would like to understand why
some societies maintain their defining features along their history, while others change so much that their
own founders would not recognize them. However, our ambition must be tempered by the fact that the game

theoretic analysis quickly becomes complex and presents several alternative routes. Accordingly, the



paper contains examples, which point at the complexities of the analysis, as well as technical results on how
to solve for equilibria and what types of equilibria to look for. It is structured as follows. In Section 2 we
present the model, based on a gallery of assumptions. Section 3 contains examples. These examples show
that the simplicity of the one period model is immediately lost if we have several periods. They also prove
that some counterintuitive phenomena, like strategic voting for enemies, can occur if the number of periods
is not too small. They also indicate that it will be worth analyzing not one but several solution concepts,
because each one of them can provide some insight on the phenomena we try to model. One example shows
that, although we concentrate on pure-strategy equilibria, the use of mixed strategies, or even correlated
strategies, may be most reasonable in some cases. In Section 4 we analyze subgame-perfect equilibria and
‘quasi-strong equilibria’,' and we discuss the fact that the streams of members for a society can be attained
in equilibrium, given the rules, through different distributions of the individual votes. In this section we also
look for Pareto-undominated equilibria. Unfortunately, Pareto undominated equilibrium profiles are often
not perfect equilibria. Thus, the members may wish to adopt less profitable outcomes in order to gain the
stability that a perfect equilibrium yields. Section 5 is devoted to the existence of perfect equilibria in pure
strategies: we provide a sufficient condition under which there will exist such equilibria, and examples
showing that the condition is not necessary. We also show by examples that quite natural cases exist in
which perfect equilibrium profiles can only be reached by using mixed strategies. In this paper agents are
satisfied in employing only history-independent strategies (which we formally define in Section 2). The

merit and the limitations of these strategies are discussed in the Appendix.

'i.e., equilibria that have the additional property that no deviator can benefit if the set of deviators does not include the set of all
voters at the start of a deviation.



2. The maodel

We want to analyze the results from imposing some electoral rules on the evolutivn of sogietios.
The: necessary elements to describe the rules, which we call (finfle horizarn} naling scheines, are the

Following:

{1) A nonemply set of originul founders, denoled FY, who belong to sscieiy at the initial stage
aud from stage Lo stage vote 1o bring in olher members: and/or to remove members., ‘Soclety’
may be an organization, a clul, a Fanndation ar aimilar enterprizes.

(2) A =et of condidaies from whom new members can be chosen. Thi= population may vary
froan stages to stage.

(3) A set of voters for each stage. Often, all elected membera can vote at all stages following
their election for az long as Lhey belong Lo the suciety,

(4) A set of rudes which specify under what conditions a person is admitted to the saciety, or is
pxpalled, or resigns.

{5} A number of stages k during which the society operates. After k stages the society disselves,

having concluded its tasks, and e play i= over.

An important part of the outcome of the voling scheme is Lhe resalting stream of members, denoted
Fo={F' F% .. %} where F* represents the members st stage ¢, after the elertionz, expellings
and resignations st that stage. Ancther part may he information concerning who voted at each
atage and (or whom. Some of the above may be unknown to some, or all the agents. All of the

information thut ks svailable to agent i until stage ¢ constitutes his (¢ — 1}-slage history.

The decigior on how ta vate at each atage, that every voter ¢ faces, should talke into consideration

the prioities thal such agent hes over the various streams.?

*Qne can think of complicated priotltles oo eventa that may even be concealed. For examplz, @ votor might not like



As mentioned in the introduction, we make many simplifying assumptions in order to render the model
simple and yet still capture some dynamic aspects of the workings of the voting scheme. In fact, we
suppress many aspects in order not to ‘blur’ the purely dynamic issues. Obviously, other, more complicated
and more realistic models should be studied. As we show, even the present simple model possesses enough

intricacies to render the analysis interesting.

Some simplifying assumptions.

1. FIXED POPULATION. We assume that the population is finite and fixed and includes the nonempty set
of the original founders F°. Therefore, we can denote the set of agents by N. N\ F' is called the set
of the original candidates and is denoted by C°. Similarly, we write C' for N\ F'. Members of C''
are the candidates from whom the voters F'~' can choose at stage .

2. NO FIRING. We assume that an elected candidate will stay in the society all the time. There are no
provisions to fire him. Later we shall add an assumption that guarantees that no agent will want to
resign.

3. 1-QUOTA VOTING. The rule for electing a candidate into the society is simple: every voter can
bring any number of candidates into the society at any stage, simply by casting a vote for them at
the beginning of that stage. This rule is known as voting by quota 1.

4. STREAMS OF MEMBERS ARE ALL THAT MATTER. We assume that each agent cares only about the
streams of members in the society and does not care, for example, about who voted for each
member. Thus, his priorities are functions of the streams F.

5. COMMON HISTORIES. We assume that at each stage the elected candidates are known to everyone.

Thus, for every agent i the relevant (¢ — 1)-stage histories are the same;” namely,

an agent j, if he knew that agent p also voted for j, but otherwise he might have loved to have j in the society. Perhaps he does not
even know who elected j. We shall not consider such complications in this paper.
Actually, ifballots are not secrets, histories may be more complicated than simply past stream of members. They



subsesgnenees of U strezms terndnating at F47, These will be denoted A%, 2=1,2, .., k.

We now have all the ingredients to convert the above setop inlo u game farm: The set of players
s &, the pure atretegies available to player @ ate chaices of sota that specify at each stage ¢ the

candidates that he votes Jor at that stage as & function of Lhe history at that stage.

Most of the thine we airall reatyict ourselves Lo pure strategies wiich are fistory-sndeperident; namely,
strategies that depend only on the stage number' and on the papulation of voters at that stage®
and neithet on the precise saquence of votes that led to that stage® nor even on the sets of members

thal, were elected in previous sluges,”

With this restriction, we can denote a pure strategy far agent 1 by o = {0}, 07....,5%), where
the stage strategy of is a function from the demain {1,2, ...k} < 2V into 2. Here, af(r, #%°1) is

interpreted as the set of vates that ¢ casls wl stage § when F*~1 Is the current set of voters

From this description one can realize that we formally allow a player an sach etape to vote pven for
agents Lhal were already elected (including himsell) and we allow an agent to vote even if he s not
elacled, This is done merely [or mathamatical convenience. UM course such voles will have no effect

on the stream of members, Qliven a strategy profile & = (01,00, v, #a), the stream of members i

saay include bformation such ax who voled for whom, and when. In this paper we shall uol smploy such histaries
exeept. when we show nnder what conditions ane cap, do withont them (Thestems 6.1 and 6.3).

S0r rather on the nomber of stages left.

"Thus, aleo on the eed of candidaics lell.

% As mentioned previously, often this sequence may he unknown, aor partly pnlmown to the agents.

TIn the appendix, we shall discuss #he werdts aod (he Lmibabions of this assoraption. [n particelar, we prove there
that any equiibrivim ontcome thet can be obtainwl by pure slrategios can also be obteined by Kstory-dndepandent
puru Hl.r-':l.l.'EEiIE. Wy chall alea show that histﬂry-indcpendent prre-sitatery Eq1l1'|1'|1rin. wrg robasl; oamely, rematn
aquilibeiy even i we allow responsss that employ mixed and hstory-dependend stratesles. Howaver, when mboed
strategies a1e feagihle, the history-dependent sel of equilihribm suleomes & definitely fcher,

1 2 probabilivy distribotion on such zets, if e are intereeted in behavioral strategies. We find L welul W deuots
Iy et the alralegy of a player i in Lhe subgame that starts at stage 4. 1t has its mwn playars (the vouers a0 this stage),
which taay be differect fram che players |n a different stage game. Dere, the superseript ? i3 just & part of the name
of the siralegy. of is a fanction of two wariables, one of which & 2, bocause the same player may act diffarently at
diferenl stagas wven I he fecay Lhe same aats of voters and candidates, Moresover, .:rI ["r',.F""'_I], T > ! wenld be his
action when ke reaches stape 7 and the sot of voters jz F7E.
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givei by

#= o) = PR U Wepea g, BT, E=L2L LR (2.1)

Mozl of thiz paper will deal with pure strategies. Since tha game is of perfect recall, by Kuhn's [1953)
theoreiw (see slso Sclten [LOTG]Y, even when we da employ mixad slrategies we ean restrict ourselves
to behavioral strategies, in which case It s sufficlent to cousider the probability distribation on the

various higlories.

Ta convert our gatne form into a game we now introduce priorilies and niilmies.

. KNOWN UTILITIES. YWe assnme that the priorities of ageni { are given by complele and
iransitive hinary refacions on the set of streams and therefore they can be represented by a
witlity junction w;. Later, when we deal with mired strategies. we shall assume that these

widlities are, in foci, Von Neumann Morgenstern uiilitics?

The last asaumption n not needed fre a great part of the paper. We assume that all utilifies are

kuown to every agent and, in fact, are eommeon knowledpe.

We want the utilitics to express the desire that each agent, above all, wishes to be in the society.,

We normalize his utility for staying alone in the society to ba gern.!®

Accordingly, we slale

7. STRONG PREFCRRENCE FOR PARTICIPATION. NORMALIZATION., Serving in the soclely is
urelerable than staving out in all cireumstances. Staying alone in the society has a zero
utility,

FThiz, of course involves wore ssoumplions oo the Woary pricciy melations.

15 o eiines wa clianpa the uormalization. s that 2 sero wtilisy corregpands to g Aitnation whers Lhe ageal stays In the
saviety lagether with tha original founders FU. Uhe readar will have po difficulty in deciding to which nermabzation
wa refer in eack instance,
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Once an agent is in the society, every stream that is better for him than staying alone is assigned a positive
utility. Every stream that is worse for him is assigned a negative utility (still larger than the utility of not

being in the society).

We now present, several possible simplifying assumptions on the utilities, ranging from simple to more
complicated considerations. Some of them will be employed in the examples of the next section, to

illustrate some of the issues. Others will be needed for the proofs.

The simplest model in this paper assumes that for every pair of distinct agents i,j, either i likes j, or i dislikes
Jj- Expressing it differently, we say that either j is a friend of i or he is an enemy of i, where friendship and
enmity merely mean that he wants or does not want the person in the society. This does not imply that a
voter will always vote for his friend. He may be reluctant to do so if, for example, he thinks that his friend

may bring enemies to the society.

We do not assume that the “friendship” relation is either symmetric, or transitive: Agent j can be a friend of

i, yet i is regarded as an enemy by j. Also, a friend of a friend need not be a friend.

‘A friend’ may be interpreted in several ways, such as: ‘the voter enjoys his company’, ‘the voter thinks he
will be useful for the workings of the society’, ‘that his opinion should be heard, because it is relevant’, etc.

Likewise ‘an enemy’ can have opposite interpretations.

We then assume that each agent wishes to spend as much time as possible with friends and as little time as
possible with enemies and that this is all he cares for. If the stages are equally spaced in time, it then makes
sense to denote by 1 the utility of having a friend in the committee for one stage and by (-1 — €) — the utility
of having an enemy for one stage, where € is a small positive number, added to break ties. "'

"We decided to require a positive € in order to express the fact that, other things being equal, the members would
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If the vovers are not sophisticated and only duratiens of time spent with ‘friends’ and ‘enemies’

matter, it makes senae to choose addilive utilities. We summarize the above formally:

8a. PURE FRIBEDSHIP AND ENMITY. Uhe utility for a sueam of members, given by (2.1) for an

agent whe succeeds in entaring the society is given by

= ¥ |[Fafri)-(1+¢ 3 |[Fnea(d)l, {2.9]

{621 i6F* ) [ igit)
where | 5| denotes the cardinality of S, {1 {i] denates the set of friends of § and en (i) denvtes

the set of enemies of §. Here, fri{f) Uen (f) = & % {i} for sach agenl 1.

o a more sophisticated model we can still assume thal whether or not to voie for a person is decided
on purely personal grounds; namely, only an the metits of the person and not, e.g., on wha is already
in the acciety, but now we let agents also talke into cousideration Low muek they like/dislike each

persoy,

Individnal considerations may be quite complicated: a voter may like one person and dislike anather.
He may want a person in the society, because he thinks that his views should be heard. He may want
a pereon i to balance an extreme stand of a founder, ete. Here we malke the strong assutmption that
whatever these considerations are, they can be summed up by eoch upené previding esch individual
with & Hme-independent and society-independnnt “weight function”, so that the sum of the weights

reflecks the wtility of the woier for one slage.

Naturally the weights still allow us to distinguish between friends and epemles. Frlends will be
agenls with positive weight and enemies - - with negative weights. If the weight is zero, we can call
him neutral to the voter,

ke 1o have a socicty with as kw conflicts as possible: it is worse 10 have & [rend snd an enemy {or u certain period
of time than +o have none of Lhem for thas period,
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Wr cauple the above assumplion with the idea that & voter wants to spend ae much tHime a5 possible
with frends and na LEtle time o possible with enemies. Together, the above brings about the next
simplifying assumption:
gb. FRIENDS AND ENGWIES. ADDITIVITY WITHIN BACH STAGE AND ACROSS STAGES. Every
ageni i hac a weight function w; : ¥ = R His wtility w{F) for a stream of members F
serving in the soclety is given hy:
w(Fl= 3. > wla) {2.3)
{tz1: igF}aeF*
Thus, w;[a) can be interpreted a= the utility that @ accumuolates from spending one stage
in the zociaty together with a.
How o weight function 40 32 determined in real life 35 hard to tell. Presamably it reflocts player i's
opinion an the importance thal Lhe apent belongz 1o Lhe soclely, Ax indicaled previouwsly, a friepd

may cacry a high weight and yet not be invited tn jain.

O a higher level of sephistication we consider a model in which not enly individuals but alse graups
matter. Thus, we now assume only that agents have priorities over the various croupe that may
compise the society and these prioritied need not be suus of weights for Individual membera. WWe
slill wssume additivity across atages. Tormally:
Re. ADDITIVITY ACROSS STAGES. Back member i fizs & utilisy fupetion w1 {1,2,..., k] x2V —
R, that way depend on i, so thal ks utility for a stream™ F = {F/, Fa,.... Fi} is

wFl= Y wkFY. (2.4)

{t21: (B}

"By gbusing slightly the Janguage, we uze the saue exprestun uf to desote both "utilisy gain for a skage” [or ‘uiility
per atage”) and ‘nlility of a stream?, ‘Ihis 13 jnstifisd becanse of assumpiien {2.1) below,
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Again, additivity across stages makes sense if the stages are equally spaced in time. Note that now we no
longer assume ‘time independence’: We allow that the same set of members adds a different utility per
stage to a player if it appears at a different stage. This may be the case, e.g., if some of the agents are

experts, whose services are important only at a late stage in the life of the society.

To complete the descriptions above we make a last assumption:

9. COMMON KNOWLEDGE. All utilities as well as all the descriptions above are common knowledge.

Who are the players? We have set up the society protocol and we have converted it into a game. Clearly,
the way we formulated it, the set of players is N. Yet, we can regard the situation as a sequence of several
games, one starting at each stage, with different players, where the players at each stage ¢ are the set of
voters F "' and the other agents are considered extraneous entities. Indeed, agents do not really become
players until they enter the society. The only votes that count are those of agents who are members by that
stage. They create the continuation and it is their interest that matters.” Thus, if we want to talk about
refinements of equilibria, we sometimes prefer to make them relative to the set of voters at each stage.

Accordingly, we shall employ the following definition:

Definition 2.1. An equilibrium strategy profile a is called sequentially-Pareto-undominated, if for every ¢ €
{1,..., k} there does not exist another equilibrium strategy profile which coincides with a up to stage 71,
whose outcome is weakly preferred by all voters in F'~' and strongly preferred by at least one of them. The

payoff that such a strategy yields is called a sequentially-Pareto-undominated outcome.

BThere are two ways of looking at it. On the one hand, the voters at a stage make their own decisions. They can
even dictate to the elected candidates how to vote in the future, threatening not to bring them into the society if no
agreement is reached. On the other hand they also have to take into account that the people who are going to
participate are pursuing their own interests and will not abide by the agreement if they can benefit by violating it.
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The concept of 'strong equilibrium' was introduced in Aumann [1959]. We shall encounter in the next
section games for which strong equilibria do not exist. Nevertheless, we shall show in Section 4 that it is

often possible to achieve ‘quasi-strong equilibria’ as defined below:

Definition 2.2. An equilibrium strategy profile ¢ is called quasi-strong, if at no stage can any voter benefit

by a deviation that involves a proper subset of the voters.

This concept is in a sense weaker than Aumann’s, because it does not allow for deviations involving all the

voters. In another sense it is stronger, because it tells us that no voter can gain even if others lose.
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3. Some interesting simple examples

A universal equilibrium profile. One equilibrium profile always exists in pure strategies:'*

If there is more than one founder, each founder votes at stage 1 for every candidate — friends and enemies
and (off the equilibrium path) every voter votes always for every candidate. This is certainly an equilibrium

point, as nobody can change the outcome.

If there is only one founder he chooses that stream that maximizes his utility given that as soon as there are
at least two voters, each will vote for every candidate. For example, under pure friendship and enmity
(Assumption 8a)," he will vote for all his friends in the first stage, if he has more friends than enemies (and
every candidate will be brought in at the second stage) and if the number of friends does not exceed the

number of enemies he will vote for nobody until the last stage, whereupon he will bring all his friends.

A transitive friendship relation. Here we assume additivity within each stage and across stages
(Assumption 8b). If friendship is transitive, then the following is an equilibrium profile: Each founder votes
for all his friends at the first stage and (off the equilibrium path) each voter votes for all his friends. Indeed,
under this strategy, a founder need not be afraid that any of his candidates will bring anybody later and no

voter can gain by deviation, neither by voting for fewer friends nor by bringing in enemies.

This equilibrium profile is perfect (see Selten [1975]), because the strategy for each player remains a best
reply against any possible trembles of the others. Surprisingly, it is not necessarily a sequentially-Pareto-

undominated equilibrium profile (See Example 3.2 below).

"“This was first observed by Hans Reijnierse (private communication).
15 Assuming that e is small enough.
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The ease k = 1, This case is guile clear under additivity within a stage (Assumption 85} Having
each founder voling for bis friewds is certainly an equilibrivim profile. It is perfect and Pareto-
nndominated, but it is naot necessarily streng. TFor example, under pure friendship and enmity
(Assumplion Ba), if there are several founders, cach having ona and a different friend then the aet
of all fonnders can all benefit by all voting for nobody. This example, which cen egsify e extended

to any numbher of stages, demenstraies that ane connot alwoys oblein a strong equilibrizm profite,

Wy remark Lhat under friends and enemies and additivity within each stage (Assumplion 8b), every
voting profile that produces the set of all friends of all the original founders ag an entrame and
inn which each [bunder votes at least for his ITiends, constitutes also an oquilibrivm prolile. Tlese
profiles produce the same oulcomne, 5o Lhey are all Pareto-undominaled but they need not be perfect:

voting for ene’s friends only 15 a dominant ateategy against any tramble,

Complications can occar if additivity does nat prevail, as ihe following wxainple shows:®

Example 3.1. 7' = {19}, k=1, &% = [a,b},

(@) =2, wmial=3 w()=1 wisb) =70,

S {{.ﬂ:l = 3, '1'12[41] = U1 ﬂz{b} = '2: ﬂ-g{ﬂ-b} =1.

PDSSIBLE SCENARIO: Founder | likes to stay alone.l™ He thinks it is & good idea to bring ¢ to the
soclety and it is o bad idea to bring b. it is a disaster to bring both, because the two will fight all
the time. Founder 2 does not fike a's viewa., He somewhat prefers b, but wonld ahove all like to
slay alonc. Bringing both is a ‘compromise’ between the pravious two undesirable cvenis.

1%Hare, and in tha sequel, we somatimes emil curly brackets and commas. We write, far example, v {ab) instend nf

t{{e, b}
(57 stands for the willivy of Founder i for S0 {L, 2}, A similar conveation will be used throughout.
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The pute-strategy equilibrium points are (&, ), [, ab) and (eb, ub}, Hone of them is perfect — they
arc all eliminated by weal domination. The only perfect equilibriom is mixed, in which Founder 1

votes for @ and o with equal probabilities and Founder 2 votes for # and b with egual probabilivies,

This cxomple demonstrates that sometimes one has to resort to mived stralegies if one wonde ¢

perfect equilibrium profile. We shall veturn to this fzsue in Section 4.

The case k = 2. This case varries other types of complicationa as is manifested by the following
two examples. These complications appeas already ander pure frirndship and enmity {Asswmption

%a). This agsumption will prevail for the rast of thiz secticn.

Example 3.2, N = {s,dcde. /3 F ={a 8} ffa)={c} frd={d}. I (c) =1 (d) =1 (e} =

frif] =0. & = 2. [It does not matter who the candidates € and f have as friends.)

Since friendship here is vacuously transitive, the following is & perfeclt equilibrivin profile: ¢ woies
for ¢ al both cloges and b votes for & at dath stages, regardiess of the histardes, Nevertheloss, there is
another equilibrinm profile thal is preferred by foth players: plogers g and b bring their friends only
in the second stege ond if enyone deviates in the first singe, boih a end b invite sil e remuining
candidates i the second stage. 1o vhis strategy each founder ties the hands of the other founder: “If
you do not abide, we shall pnnish you by bringing in ail the enemijes.” This i= even a zubgame-perfact
equilibrium and sequentially-Pareto-undominated 1 but it is ne? perfect: Whatever the action of
the other pemun, vouing only l'l;"rr ane’s friend in the last stage is never worse and in some cascs

hetter than the prescribed action,

1% Ancaher variant, in which the deviater is punished unly hy the other person, in case of deviabion, & et aubgame-
perfect but je more coovincng: why shonbd the deviator agree, and ebide by punlshing hitnseli? This i ancther
nmapifeetatlon of the known dilemma: Why should oue brust a promize of o peson, who alveady proved that be does
ok keeyr his proinises, becawse ha deviated in the first stage.
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We see alrcady in this simple example the dilemma: Which equilibrium te recornmand? A perfect

equilibeiam which vields small but 'safe’ profits or an equilibrivm which maximizes profits, but uses

throats whose credibility is questionahle?

Example 3.3. N = {1,2.3,a.b.c.d. e, [ ,povsh b =2, ¥ = {1,2,3}1 Ir{1) = {g}; fr{'.!] =
{e. ) frf8) = {a,b,¢c,d}; tria) = {p,q}; 0 (d) = {q.7}s br{c) = {pr}: Ir () = {pq.r} fr (e} =

fa,plsfr(fy = {s,0}i frig) = {a,pyhifr(py=1fr{g) =fe{r)=1fc{s) =D

We reach o EQ[IE'I.U&iUIl.b}f Lhe [ollowing heunstic arguments: At fest one thinks that 1 should not
invite ¢ at atage 1, becanse inviting him would bring abont three enemies of 1 in the second atape.
Sinilarly, 2 shouvld apparently not invite any of his friends, because that would Lring bim 1o
enemies in Lhe last stage. Player 3, however, should invite off his four friends (not less?) in the first
stage, because that will bring him only three enemies in the next stage, with a net profit of 1 — 3¢,

compared to not inviting any friend 1 the lisl slage.

Realizing, that p,q are going to be in the society in the last stage anyhaw, player 2 should nat
hesitate to vote for his friends in the first stage: He pets two frlends at that stage but suffers from

anly one additional snemy next stage.

Realizing that alsa s will he present in the last stage anyhow, it now followa that 1 can only gain

by hringing his friend in stage 1,

Thus, the following is an equilibrium profile; Every voter brings oll his friends we soon as ke is

wliowed to vale,

The utilities (not incloding utilities for Llime spent with the orginal founders and ignoring multiples
of €) are: wy = —Id 43 = —10,uy = =2, u, = =10, 8, =ty =y, = tp = ¥, = =12, gy = =10, 4, =

g = e = Uy = —1n.
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It can be checked that this is indeed an equilibrium profile and, moreover, it is perfect.'

This is not a sequentially-Pareto-undominated equilibrium. Like in the previous example, there is a
sequentially-Pareto-undominated, subgame-perfect but not perfect equilibrium that will be strictly preferred
by all original founders, and in fact, by everyone who will find himself eventually in the society; namely, to
invite nobody in the first stage, invite one’s friends in the second stage and punish deviations by each voter

inviting everyone in the second stage.

To sum up: We exhibited here a “safe” equilibrium outcome that does not yield much to the founders and
another “not so safe” that brings about higher utilities to the founders, and moreover brings about a society
with much fewer frictions in it. Which one (if any) should be chosen has to be decided by the members. Do
they trust their co-founders to honor the “agreement” in the second case? Do they believe that the
“punishment” will be carried out in case of a breach? The answer to such questions, we feel, is beyond the

scope of the theory.

When many common enemies exist. We have seen in the previous example how a punishment can force
an equilibrium. In fact, if there are enough common enemies, then any agreement between the current
founders, at any stage other than the last, can be enforced by a strategy that stipulates that out of the
agreement all voters will vote for all common enemies as soon as they recognize that they are off the

equilibrium path. This is even subgame-perfect.

The question then becomes: Which agreements are the players likely to sign? Realizing that almost all
agreements can be made binding as explained above, this case should be handled with the tools of

cooperative game theory and this is outside the scope of the present paper.

We keep the above in mind but we wish to make the following two observations: (1) In real life one

1 Any “tremble” can be observed only in the last stage when it is still to one's advantage to bring all his friends.
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can usually axlend e sel of candidates s0 as to include as many common enemies as one ‘wishes'.
{2} Nevertheless, a threat to hring these comman enemies is often not eredible as a general procedure.
[t often would be considercd upthinkable, brcause it would undermine the very foundations apon
which ithe society rests. Thuos, althongh such Lthreats may be leasilie, often they zre nat viahle,
which brings us again to the recognition that 4 model does not usually eapture zll the intricacies of

& resl siluation.

The halpful enemy. We have sean how voting far an enemy may ba beneficial off the equilibrium
path. The following example will show that vollng {or an enemy may be beosficial alzo along the

cquilibrinm path.

Example 3.4. ¥ = {ﬂ,ﬁhﬁh...,E':,,G-[.Iﬂg,...,ﬂﬁ,{{,ﬁ}‘, = {{l}‘, fl"{d-} = {b‘i,-n,bs]; fr[.!':-t] =

{esht=100 0 fr{gy={d}i=1,. Sl {d)={e};frfe) =H k = 4.

The fonnder would like o bring all his friends, but if he simply does =0 at the firsl slage (hen each b;
will bring ¢; in the next slage. This is because the bz will not Foar?® that ¢; will bring 4 hefars the
last stage, knowing that if ¢; does so, 4 will bring €. To prevent this from happening, the founder

can vole for € in the first stage, A complele strategy profile is this:

ol = 4§, {e{2.3.4%, vFL
of = {e}, Le {234} VY

o ={d}, ic{l,...,5}
={{d}, il ¢ € Ft=1i,

@, otherwise,

e

= {1>---l5}: te {Zlg}

T

GEI ={Ei}'. 21'5{1....._,5}.;

#0We are naing the fack that, becanse ¢ §s positive (Assumption $a), & voter will prefer to postpene a voie for a friend
if thir friend will bring an cnemy at (e next stege. He will gain an « by postponing one stage.
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. 15 i Eﬂl
Lo feh Er

T, otherwise,
fe},  ilde ¥,
oi =i}, ifeg I, ie{l,.. .0}

A,  otherwise,
"Trt; =0, =234

IT;': = {fll., s _,bg,ﬁ}.

Qe can verify that this is indeed an equilibrium prefile.

Example 8.5. The game of chicken. In thi= axample, o= 11,2}, V=g, 2 v}, =3
Feowmder 1 fikes only =3, whe likes only o). Founder 2 Likes only x4, who likes only vo, Agents i

and yg like only each other.

Skipping formalities, each founder can essentially either choose his friend in the first stage, or refrain
from doing eo. (He sirictly loses by voting for am enemy at Lhis stage.) Unfortunately, il player 1
vates far his friend at the first stage, player 2 will loee if he too votes for his own friend. The reason
is that in this case it i= clear that both #; and 45 will be present in stage 3, 20 there will be ne reason
for bulk z7 wnd 2 to refrain®® from voting for their fricnds in stage 2. These friends are enemies of
the founders. Putling together the relevant infarmation and ignoring ¢, we get the following payoff

as fonctinns of the choices in the first stape:

'I‘ Lo
0 -3
¢ f i
1 —4
1 -3 —4

3, gay y; were Db PIesent al stage 3. oy woubd not hawe iuvited 1 at etage 3, 9 € Iy pusikive and xq knows tchat
. will hring g2 (an enamy of 11} at the last stage.



‘This is the [amaous game ‘chicken’. It has two equilibriom points: {z1,#) and (¥, £3), yiclding payeils
(1, —3) and (=3,1), respectively. In addition, the players can each use a mixed stralegy (1/2,1/%)
that yiclds a morc sensible payoff (—1.5,—1.5). All thezse are undonnnated apd therefore perfact

(see Kohlberg and Mertens [1%86], Appendix D).

Even more sensible [or the players is to decide by a 8ip ol an unbiased coin who will bring bis friend

ter the society, The expected pavol will then be {—1, —=1).

Thia esnenple comnes (o show thal mized strategies should nol be ignored.
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4. Common voting and partial common voting

At the beginning of this section we study common voting profiles; namely, profiles under which all voters
vote for the same set of candidates at each stage. We show that every equilibrium outcome that can be
reached by a pure-strategy profile can also be reached by a common-voting profile that generates the same
stream of members. These profiles have the additional advantage that they are quasi-strong (Definition 2.2)
equilibria whenever they are subgame-perfect and the voting scheme obeys additivity across stages. A
quasi-strong equilibrium gives each voter the assurance that, without his participation, no subgroup of the

other players will agree to deviate, because none of them will gain, and some may even lose.

We then proceed to characterize and, at least theoretically, construct all the equilibrium streams, and
therefore all equilibrium outcomes that can be achieved by pure strategies. We also indicate where to look
when we want to get all the sequentially-Pareto-undominated equilibrium streams, as well as all the

subgame-perfect streams.

In the last part of this section we provide interesting procedures that produce equilibrium profiles that only

‘partially’ employ common voting, or even some in which the voters vote for distinct sets.

A key role in reaching some of these results is expressed in the following:

Lemma 4.1. Quota one implies that whoever the voters bring in can also be brought by one voter.
Consequently, if a set S of candidates is chosen in an equilibrium profile of a 1-stage game, this set has the

property that, if elected, no voter would have preferred that more members were added to it.

Proof. Indeed, had he preferred so, he could benefit by adding these members in his vote, contrary



ta the fact that the profile was an equilibrivm vne, =

All strategies in Lhis secliun are pure and history-independent. We shall rarely repeat this fact. To

svoid trivislities we amueme thar = M

Consider a game T ihat represents a vating acheme, as doscribed in Section 2. Ewery subpame
of this game is itself 2 game that can result from a voting scheme. Qnly the #et ol founders and
candidates and the number of stages diller. This enabies us to work by induction. Suppose that the
play in all the proper snhgames is dnown and fized. One can than constrict a one-stage game 1M
whose lree is bhe subtree for the first stage of T and whose endpoinl payoll veclor: are caleulated
fram Llose of I': "I'he payofl vector at an endpoint of I'? is the payofl vectar Lhal results in T from
rerching the corresponding node in I and contlnuing along the fixed path of the subgame attached
to that node.’? Note that the playera in T7 are the ariginal fonnders, and cach onc of them has
exacily one informalion set. [ fact, 17 i= a game played simultaneously by all the founders, Note
also that andpoints of T! at which the same candidates were elected have the same payoff vectars

if the coptinuations are history-independent.

Let o be an arbitrary equilibrium prolile in T, Tls frst slage o), regarded s a strategy profile in
I, is an cquilibrium profile for thiz game.? Tadeed, il & player can benefit by deviation in T, he

could also benefit in I’ by choasing the same daviation in the first stage.

Wa can now constrhet another equilibrium profile 1 for T, by instruefing enery origingd founder

to zede for the union of all the votes of the forndders unider o) ia.,

E’: = LJ?'E;.?':'-IT_%, Wi e .Fﬂ {4-1]

¥ This construction can be ccbendsd also e cases when Wie conlinuations are neithe pere nov hsteey-independent,
hiost results im this section, howewer, will not ba troe in roch cases.
B2 This rlaternent is toue also i the profibe 1s pof distory-ludependens, and not para.
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We call o' the first stage profile generated from ol by common voting. Analogonsly, we say that 7 is
a strateqp profile generated from @ haory-independent stroteqy profile o by common veling, il each
stage, on and off the cquilibrium path, is generated from the corresponding stage of @ by comman
voting, Stralegy & is wall defined and o and & vield the same strearn of metnhbers, The same stream
of members for o and & arenrs also in all the snbtrees off the equilibrinm path; therelure, 7 s au

equilibrivm profile vielding the same payoffs as o and it is subgame-perfect if v 15 subgame-perfect.

Propogition 4.2. Lwel & e a histary-independent pure-siralegy equilibrinm prefile for T'. The
strategy profile &1, genorated from o' by common voting, is & quasisirong equilibrinm profile for

L.

Froof. 1f|F®| =1, then 5 = &, it is an equilibrium point and vacuously a quasi-strong one. Let
J I = 1. The set. § of players that was alected undec @t is the same vel that was slected under ot
It yields the same payments, because o« was a hisrorvandependent strategy. Any desdation from &L,
made by & nonrempty proper subset of Whe founders, can only vield & wel Lhat contains §, because
the remaining (vunders siill vote far 8, Therefoure, if such & devistion from & pesulied with some
members gaining, ther, in o! cach of them could have Forced the same better payment, by alone
adding the sane additivnal candidales, contrary to the fact that ¢! is an equilibrinm profile for T,

Une should be a bit caceful when oue tries ta eeneralize Propasition 4.2 to multl-stage games: At
tuture stages ‘new’ players may enter the game and one has to take inte account possible agreements

involving them. Consider the Fallowing:

Example 4.3. Let F° = {1,2},C% = {g,5}. Under pure [riendship and enmity (Assumption 8a),

agents 1 and 2 like agent #. Agent g like: agend & For all other paics (¥, 7), i Is an enamy of 4.
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k = 2. The following strategy profile is subgame-perfect:
al=0, of={a}, o1=0, of={a}, o=}

1t is already in common voting for the original founders; they always vute the seme way. -Never-
thelees, this prafile is not immune to doviation invelving a praper subget of the feunders: Agents 1
and a can deviate by 1 voting for @ alresdy in ihe frst slage and o voting for @ at the second stage.

By this deviation agent 1 gains and agent 2 also gains, because he becomes elected.™

This cxample indicates that ane should require that commoaon voting involves all members that enter
the game on and off the equilibrium path. lndeed, if we augment the abave example and request
Wial hodll 1 and 2 vote [or & al Lhe second stage, when o 1e elected in Lhw first atage, then na
profitable deviation can take place by a proper anbaet of the founders. For cxample, it will dv no

goad that & will relrain [rum volisg b, becansze founder 2 will still vote far b.

We keep in mind thal when we talk about a deviation of a set of voters we allow all kinds of
apreemnents: involving [uture candidates. Candidates off the equilibrium path will agree o anything,
because they preter to be in the society under all circumstances (Assumption 7). It stands to reason
Lo request that candidates along the cquilibrium path should pot lose when we claim a profitable

deviation, although this ia not imporiant for the next theorem.

Theorem 4.4. Let 7 be 2 pure-stratepy history-independent subgame-perfect equilibrivm profife
for a game ' represcoting a voting scheme defined on preferences satisfving additivity across slages
(Assumplion 8c). Let & be the profile generated from & by commeon vating. Then & is an equilibrivim
proiile vielding the same stream of members and therefore the same payofl vectors as o Morenver,

it iz a quasi-strong equilibrium profife.

¥0ne can qoestion how safe ks this sgrecment belween 1 ead o Obviously, ¢ desires not fo honor the sgreemant.
This, however, & icmderant to the dali that 1 and & can both gain i Lhey followe this agreement.
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Proof. The stratery profile & yields the same stream of members as #, 50 the payolls are the same
for every player. Moreover, it is a subgame-perfect equilibiium profile, because If ene could benafit
hy deviation in & subsame, he could bensfit by the same deviation in ¢. We shall prove by induction
o the number g of stages left since a possible deviatian started to occur. that no proper subset of
FE=7 can deviate in such a way that at least one deviator gaing, Propogition 4.2 establishes this
farl, lor ¢ = 1. Suppose that this was verified for subgames with ¢ — 1 stages aml we are now facing
a deviation starting in a subhgamn r having g stages. Let r be a deviation from &, such Lhat the
set; of deviators does not include all Lhe voters £7-2, Denote by [ the first stage of I' with payaff
vectars at the endpoints calculated on the assumption that the continnation was as dictated by &
i L', Denole by T™" Lhe first stage of I" with the payoff vectors at the endpoints calculated on the

assumption that the continuation was ax dictaled by «in T%

Denote by A the endpaint of I™, that is reached il the relevanl pact of & is played. Drenote by
B the endpaint of T'* that is reached if the relevant part of « ig playved. Denoie by A and B the
eorresponding cndpeints in T**. A and B correspond also to nades of T, rearhed under 7 and 7 at

the end of stage & — g+ 1. We denote these nodes also A and B,

Let A be the subgame of I starting at B. It has ¢ — 1 stagea. Wa can regard + as performed in two
steps.

Step 10 The play changes from 4 to B and then continues as dictated by .

The resulting payodf vector would then be the payoff vector at endpoint B of ['*, whereas the payoff
vector al endpoint A of T™ is the payoff vectar tn I if the play is &.
Step 2: Perforn further maodification in A, il ihiz iz dictatad hy 7.

The proef will conclude if we show that no deviator gajns either in Step 1 or in Step 2.

RV are crcading these l-ulage games in 2 way similar to the way we crested [ et the beginning ol thiy section.
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Indeed, the claim for Step 1 means that no deviator gains in I'™ by mwwving from A to B, The
claimn for Step 3 means that no Jdeviator gained in A by switching from & to r in this subgame.
This implies that ne doviater gained in passing from B in ™ to B in I'**, bevause these payoff
vectors differ from those of A by the sume constant payall vestor that wag accumelated until B was

reachad.* ‘Thus, ultimately, ne vialalor gained in I' by desiating [tom & 1o 7.

T'he: elaim tor Step 1 tollows from Proposition 4.2, hecanse @ indnces a pure-strategy common-voting

profile in T, The claim for Step 2 s simply Lhe induction by pothesis, =

We have shown that afl pure-strategy history-independent equilibrium oulvimes can be generated]
by commen voting.® The patursl question that now eomes to mind iz how to characterize all

strcams that constitute such ovtcomes. Proposition 4.5 and Theorem 4.6 provide an answer.

Proposition 4.5, Asseme that there are at feast two founders in a l-siage game I'l. A sat 8 of
candidates chosen can result from a pure-stratesy equilibifum profile iff 5 has the property that no

Founder would prefer io add members to 538

Proof. The ‘only if” part is L.emmna 4.1, Canvetsaly, suppase S has this property and is voted, say,
by cammon voting, Then no player can benefit by devisting alone: He cannot delete members from

S and ke does nat wanl o add members e 5. =

Thus, to generate all eguilibrium oulcomes for a 1-stage game one has to examine all subsete 5 of
£ and select those that have the proparty that no founder would like to augment them. This task
is manageable by a compuler I |V| is resvonably small and & = 1. It becomes less so when the

number of 2tages increases.

e are in'-’ﬂﬁ.‘llg additivity acrouss ulages.
TRy Theorem 4.1 we can drop the *histary-independant’ ragnivement fram this statement.
B iuch an 5 alwaye existe, bor cxample 5 = 0V,
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Theorem 4.6. Consider a game I, representing a voting scheme, whose utilities obey additivity across
stages (Assumption 8c). Work backwards from the final stages constructing strategy profiles, analogous to
the one in Proposition 4.5, taking care to choose the same S, whenever the same voters appear at different
starts of a same stage. Continue, as long as there are at least two voters. If you encounter a node with only
one voter choose a path leading to a maximal payoff to this voter. The above construction results in a pure-
strategy history-independent subgame-perfect equilibrium. All pure-strategy history-independent subgame-

perfect equilibrium streams are obtained if one exhausts all possibilities of the above construction.

Proof. Start from the last subgames and work backwards by common voting. At each stage you find
yourself with a 1-stage game with fixed history-independent subgame-perfect continuations, for which
Proposition 4.5 can be applied. This shows that you will thus construct a pure-strategy history-independent
subgame-perfect strategy profile for the entire game. By Theorem 4.4, all pure-strategy streams will be

reached if one exhausts all possibilities. m

It may well happen that several sets S have the property that no founder would have preferred to add more
candidates, given that they were elected. If such a set S; is contained in another such a set S,, then the
payment to each of the founders under S, is not greater than the payment under S, since
otherwise a founder who would have preferred to vote for S,, rather than for S; could have forced
this outcome. Consequently, all sequentially-Pareto-undominated equilibrium outcomes in a one
stage game can be found throughout common-voting procedure described in Proposition 4.5 but
choosing only sets S that are minimal under inclusion. Similarly, we can obtain all sequentially-
Pareto-undominated equilibrium outcomes in a multi-stage game by performing the construction of
Theorem 4.6, but restricting ourselves at each stage to sets S that are minimal under inclusion. (Of

course some equilibria reached by this construction may not be sequentially-Pareto-undominated.)
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[f we were only intérested in equilibriem outcomes wa could siop liers, But we are akso interested in
other equilibrinm profiles that lead tosuch outcomes, in particular these obtained by pure strategies.
YWe shall close this section by prodocing s wider clazs of aquilibrium profiles. These extend the
common-voting ¢lass in that they involve only partial common voting, or even no cummmon veling
at all, "I'hi= last type of profile will play an imporiani tole in Seclion 5, when we deal with perfect

eepmilibria,

Proposition 4.7. Let ' resuit from a game V' haviog known and fixed play al all proper sulgames.
Assirie that T has at feast fwo foupders. Let 5 be o set of candidates from ©9, having the property
tha!, il elected, no criginal founder will prefer to add players to 5. For each lvunder 1, cliovse a sel
F;, contained in 5, that fs a hest response io®™ S\ P Let ' = $\ ;e F;. Finally, let ¥; = FyUd.

Under these conditions, {Vi: i € F*} is an equilibriun: profile for rt.
The proof requites two leramas;

Lemma 4.8. Let T be a first stage game, as previously described. Let P be a beat reaponse of
founder ¢ sgainst §\ P, where § is an arbitrary given set of candidates from U containing . If

G CHN\F, then Q) is alse a best response of { to 54\ Fr

Proof. Q is covered anyhow by §Y B, so it makes na diffarence whather ¢ includes ) in his vate,

ar nof. w

Lemma 4.9, Let B be a hest response of founder i, playing 1, against 5\ F;, where 5 is an

arbitrary set of candidates containing F,. If £ C F; then F;\ H iz a best responze of § o (5 F;JUR.

Proof, Vouiug 5 %\ & against {§Y P U B, would yield player ¢ the utility gained from 5 being

3%uch a set always exista; for exomple 8.
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elected, I voting for another set, €2, would yiaid him a higher ulilily, then voting ¢ U B would be

a botter response to § 3\ Ir than voting F;, because (QU R} {S\ B} =g U {RU {($\ 1)) =

Proof of Proposition 4.7. F; is a best response of 4 against 54 P thorefore, I is a hest response
of { against 8 Pr = {§Y\ P2 N (W pey o Vi) {Lemma 4.8). By Lemma 4.9, (CUF)\ Usepy 15 F; s
a best response of ¥ againet Uygpoy iy V. Invoking Lemina 4.8 once more, we find that V; is a best

rezponse of ¢ against Uiepey ¥y o

Theorem 4.10. Conrsider a gaine [, rcprescoting a voling schewe, whose ulliibtivs chey additivity
across stages (Assumption Sc), I a construction analogavs to the ane in Propasition 4.7 is donc
at every start of a subgawme of T, staciing fTow he final stages and working backwards as fong az
there are at leasi two voters, and choosing the move leading to A aximal payoft if encosntering

ene voler, then, the resulting profife constitutes a pure-strategy subgame-parfoct squilibrinm. u

Proof. We may assume Ulial [#?] = 2. Let @ be a strategy profile as descrihed in the theorem, Let
7: be a deviation made by player 4, starting at a certain subgame . If the deviation started at the
last stage then plaver ¢ could not have benafitted from it either becanse the equilibrium path was

not affectad by the deviation, ur, by Propesiton 4.7, il il was.

Assune by induction that a player cannot gain by deviating alone in any deviation whase leagth
i at mast g — 1. Let I' be a g-stage subgame. As in the beginring of this section® comstruct
l-slage games ['* and T*', for the subsame I, derived from ¢ and from ¢ .= {o_;, ©;), respectivaly,
These games have the sama trees, but their payofl veclors may be different, due to the different
continuation by 7. Lat 4 be the endpoint of these l-stage gatmes, a5 well us T, reached vis o and

let H be the endpoint of theze games reacled +ia 7,

F0U et v constrocted T,
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Denote by A the snbgame of T starting at B. By the induction hypothesis, player 7 cannot gain
from deviating to 7 in the game A; thecefore, his payoff at B in 1™ is pol 2malier than his payoff
at & in 1", sinee w Gxed “income? was accunulated in both cases; namely, the vtility from the
randidates at the fitst stage of [ while maching B3 But reaching A in T™ yiclds player £ a utility,
which iz at icast a= much as reaching B in the zame game, because the restriction of ¢ to 1™ iz an
equilibrium for T* by construction and Proposition 4.7, Clonssquently, the payoff ra i at A in T* is

nol smaller than the payoff to © al 8 in I'*", which proves thal o is indeed subgame-perfect. »

e are tuvoking additivity across slages.
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5. Perfect equilibria in pure strategies

Common-voting equilibria arc usually not perlees. A voler may be tempted to deviate, figuring
that the others will rontinne to vote in the same way with high probability, w order to extract
some profit in case of “trembles’. [n this section we provide a sufficient condition for the existence
of perfect equilibria in pure strategies and show haw oie can construct them. We then show by
examples that this condition iz not necessary, as there are other cases in which pure-strategy perfect
equilibria exizt. Nevertheless we ahow that Tor 2-stage cames with additive preferences across stages

and within a stage, pure-strategy perfect eqnilibria alwnys exiat.

Wy ure abie to prove the main theorems under the assumption that the voting scheme iz yeneric;
namely, 1 iz such that different stresmas vield dilferentl wiilivies Tor cach player. Example 5.3 shows

that thiz assumption iz neccssary for the result.

Proposition 5.1, Let 17 be a first stage gamc, derived from 2 game [ representiiy & genelric vobing
zcheme as defined in Seciion 4, piven a fixed copiinuation at the proper subgames of |'. Suppose
that chere cxists a sct of votes ' = {F,}iepe, where F; G C?, whese vnion is denvted by 5, that

satisites:

(1] P is an egnilitirium prafile for 1",

(2] B P; =0, whenover 4 £ j.
Patine

Vii={ee5: 85 ~; S\ {z2}} {5.1)
Under these conditions ¥ V := {¥;};2p §s & perfect eguilibrimin profile for T1.

*?Herw, ~; means: ‘Treferred by 3.
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Terminology! Profile P, satisfying (1] and (2) above will henceforth be called a gemerlired-

partition equilibriurn prefile (ol 5, when needed}).

Proof. The theorem is certainly trne™ if |C9 € 1, ot if |F?| = 1, so we assnmic that [CY] > 2 and

|F?| > 2. We call members-of V; desirable for . Other members of § called undesirable for player i.

For all iin F¥, denote P_y = U{P: 7 € FUY {i}}. As P} is a best response of agent 1 to P_;, and

H1P_; =8, it follows that each member of F; is desivable [or {. Consequently,

PCV.C8  vief (5.2}

Conversely, if V; satisfles F; € ¥ € 5, then V; is 2 best response (o Po; {Temma 4.8).

For all 7 in &Y, denote

M;={TCC% T=F\{z} and x € Py}, (5.3)

Hi={TCC“T#P, T£V, T ¢ M. (5.4)

Note that M; = 0 il I = ¥ and I; # ¥, because (7% = 2, a3 can easily be checked. Far any
pORItive £1, €3, ¢, such that & + 3 + &5 < 1, define ¢ = ¢; + ; + . For each §in 79, define F as
r1+ ez tos, i Poy # U and as & + eg, it Py = 8. We construct the following completely mixead

stralegy o; for player j, j € F9;

2ot =1, and [F9] = L, shen all the playsss vole their preferred ontcoma oot of Lhe pair {8, OP}. Since there ars
unly two puadble ontcomes, voting for the more preferyed ondcome against any strictly mixed stravegy profile alwags
giren & higher prohability of ¥ sccuming ¢han voting for the les proforred one. This proves that woting for the mcat
pieferrad outcome is a perfect eyuilibriom. Olher cases are rvan simpler.
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With probability 1 = ¢f vote F;,  0<<& < 1;
With probability e vote &, D < < 1t

{ Il P; = V; vole [ur ¥ with prohability 1 — & 4e N}

If F; #  vote with probahbility —— for P; % {z}, for each member z of F};

EA

Vote with probability i foe each member of H;.

€3
il

Additional conditions on €, &1, €z, £ Will bo placed later, but we can now slate Lhal

et =€ + ] + e,

{o.8)

{5.6)

(5.7)

[5.8)

(5.9)

where wa set ei = £a iF Py AW iand r{ = [, otherwise, Congequenlly, «, E§1 €y — D If o 0; namely,

wy =+ ¥y for cach 7 € F° and {5, }erc = a valid test sequence, The proof will be concluded it we

show that the epsilons can be closen in such a way that ¥ will be a besi response Lo o_; for all

the members of the sequence.

For a fixed { in F", let T be a set chosen by FO\ {] under 0_; := {os: j € #%% {i}}. Denote hy

iy My (), 73, the following probabilities:

i : The probability that P_; € 7 C 5 and at least one member 7 in F®\ {¢} did not votc P;.

i Note that o could be zero. This happens, tor exampie, if § =0
7t The probability that cach § ia #0\ {3} voted P;.
#t:(z) : The probability that T = P\ {x}, for some z in P_;.
Note thal no miz) is defined if P_; =1,

12 : The probability that sny other set is chosen,
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Clearly,

a+m+ » wlri+p=1 (5.10)
#.'!E'p_.'

where summation over an emply set is defined as zero.

We ran place ile lollowieg bounds on these probabilities as follows:

o= where ¢ = [F|; {5.11}
miz) 2 € e /)5, all xin P_; f5.12)
halr) < €2 + €, al e c P {5.13)
15 < [(e2)® + €3} - 1w, where w = 21" a1}, (5.14]

Indesd, (5.11) follows rom the definitions of ¢ and m. (Sliict inequality prevalls if By = ¥; for
somc 7 in P {1}.) {5.12) follows from the fact that the event that P_;% {2} is chasen by F {i},
whose probalbility is measured by muiz), occurs, for example, if agent §, whose £; contains z, votes
P {z} and every other player £ in F* 3\ {i}, votes B.® (5.13) follews from the fact that this
cvent P\ {x} is included in the avent: The above player j voted for neither P; nor ¥ (probability
r:'i-ﬁ-f:; < ez +¢3) (see 5.0)), and all other player in 'Y\ {i} voled according bo #-; {probability not
larger than 1}. To prove {5.14), notice that this event cccurs only if one of Lhe folluwing elenmntary

events happened:

(1) Ome player jin F*\ {3} did not vote either P; or V,, or P;\ {z}, for some 2 in P; — an event

whose probability is al most €1

(%) Two players 5 and £ in F°\ {3} voted P\ {z} and £\ {p}. foreome s € P; and y £ 7> — an
event whese probability is at most s-;  tf.

M Hare we wse Troperty (2] of the proposition,
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The number of such cvents is at most w and £ - ¢§ < (&2}, (8.14) follows now from the observation

that max{{e:)?, ea} = (e2)® + €.

[n order to show perfactnesz of V, we have to show that V; is a best respouse to o—; for each §, if
one chooses €, €1, 62, £2 appropriately, and that suck a choice can be maintained [ar ¢ — 0. To this
end we denote:

h;: The payoft to {1 if 5 is chosen.

ar The minimum loss to £ if B zet T results, T # 5, such that T 2 P,

blz): The gain to 2 if §Y {z}, results, » £ P_;, and r is undesirable for % e, © € Vi

Lo The mininvmn of all the 0(x) for £ € P\ Vi

e: The minimal loss to2if 5 {2}, 2 € P_; results, and =z is desirable [or i; Le., » € Vio

AM: The maximal payment in [

et The minlnal pavment in [F
Mot that &, b)), ¢ are positive, because the voting scheme is generic. Thus, only & vote giving the
outeome 8 s w best reply to P_;. bx) and ¢ arc undefined if P-; = 9. They are nob necessary lor

this case a3 (5.19) will vot be used.

We now give bound: on Lhe payoffs to ¢ under various pure strategice of his, when all agents in

B i) vote according to o

If 1 votes 1}, his payoff is at legat
Btadks+ 3. mEht Y. mz)h+ b))+ mm. (5.13]
LTEFLNY TEF_\F;
ludeed, S is certainly covered i all members § in F9 %\ {{} vote either V; or P, or if they vote
P\ v} and » € Vi, I[, on Lhe other hand, P-; Y {z} resulis and z € V;, ¢ will gain Hz). In all

cases, however, he will get al least m.
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I ¢ votes for a et (7, which is not & hest reply to P_;, bhie payoll s ol most

i +mih— )+ (m+ 5 miE)M. {5.16)

BEFog

Tndeed, he will nat get more than A; if ¥\ {5} vole T sacl Lhat P_; C T C §. However, he will
certaindy gel ol mest by — a if P_; Is voted by the athers, which happens with prohakility 7 at

least. In all other cases he will not get more than M.

If 4 votes for a zet 33 that £s a best reply to P_;, bot is different fram ¥, then since H € ¢J2 © 5,

(}x results from V; by omitting r membere and adding & members from 8% V5, with r4% > 0. Here,

r =P Vit \ @2l (5.17)

5= [P\ V) nekl {5.18)

The payment to i if he chooses such a Qy Is at most
o+ Y wmiEm-o+ Y mEket Y (e
e[ P_ ;M 1Dy TE(To NV ING, FE(F_ AN N

3 me(E)lhi 4 0(x) + A
CELP_ VTG

(5.19)

Here, aums vvar an einply sel sre considerad equal to zero. Indeed, 5 will cerlainly result with
probability n+ 1, at least. He will lose at least ¢ each thne F9 i} vote £_; % {2} with 2 desirable
for ¢ and ¢ does not vote for 2 in (Qa; otherwize, he will 261 sel b i be himzelf vated for 2. He will

not. gain &{z) from the omission of an undesirable 2 from P_;, if he himself voted for x.

Expression {5.15} ia not lesa than expression {5.16) whenever

am 2 (M—mim+ > m(=)), (5.20)

=y S

because f; > m. Thiz is all that is needed if P_; = # for V; to be o best reply to o-p.% lndeed, in

thiz case F; = 58 = V; and ageot § does not have a strategy Lhat is a besl respanse to P_;, which is

F51n this cage, the summation i (5.20) iz zoro.



different from ;. If, however F_; % §, then, in addition to (3.20) the following inequality, derived
from {515} and (5.19) and the fact that (2] > & shoull also be satisfied for all sets ¢ that are

best replics to P_; but differ Irom V:

e S mizl+b Y mls) > wlM - m). [5.21)
wd Pl e TE{P_\ W g
Mowr, recall that
t =ty +ex+ ez (5.22)

and note that if € — O then also ¢/ — B, becanse 0 < ¢ < ¢; therefore, by lelbing ¢ Lrace a sequence

tending ro zera, onr cormpletely mixed strategies will converge to V.

It follows fram (5.11), (5.13) and (5.14), that {5.20) will be satisfied if

— 2 [wr{{e2)? + 1) + )8){ez + )], (5:23)

This inequality cai certaindy be malnfained fov all 7, by letuing ¢ be near envugh Lo e. Having fixed
g1 sufficiently near ¢, we are still free Lo choose ey and eg, as long a2 their suin remaing constant

(namely, £ — € }.

Tt follows from (5.12). {5.14) and the fact that r + 5 > 0, that (5.21} will be satislied if Q;'s exist?F

and
w] S|
dir+ 2

()72 = (M — m) ( + €2). {3.24)

where ¢ = min{b, ¢}.

Ta thie end, for a fixed pusitive ¢, choose 11 sufficiently ncar to ¢, so that € + ¢35 becomes so small

that for any choice of g,

w|5|

{q}"" P2 M -m e

Y[f no guch Qg exist, (5.31) tieed not be satisfied.
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Having fixed also oy, choose ¢» sulliciently near to € — €1, s that ez beromes so small that also

|5 &
dir +sheg

S@)* 3 (0 — ) (5.26)

Adding (5.25) and {5.26) vields {5.24).

We have {lecefore proved Lhat [or any positive € we can choose ¢, €2 and 6 in such & way that ¥

will be a best roply to oy, uniformly for all £ in F*. Letting € — 0 concludes the proof. =

Pioposition 5.1 ralses two intereating qnestions:
{1} What conditions guarantes that a generalized-partition equilibrium profile exiats?
(2) [s the eadstence of o generalised-equilibrivm-parlition necessary for the existenes of pure-

atrategy perfect equilibrinm?

We anawer the secomnd question pegatively, by the following example:

- Bxample 5.2, The population cousisls olt
F=112), %= labl
There &= only one perigd; & = 1. The wtilities of Lhe founders ape:
will=2, wl{feh=3 wn{i}l=4 wnlled)=1,
i) =4, wi{e))=2, w({8l=1, uwn{aeh})=3.

The payoff matrix is given hy¥?

] a b ab
3 3 1 1
o 1 5 1 3
. |3 3 T i
2 2 3 3 |
b |3 i 1 i
1 3 1 3
w |1 1 i 1
3 3 3 3

FThar stmplicity wa cmbt the curly brackets that denote sots,
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Tn this axample the pure equilibrinm profiles are ({e}. {a,8}), {{f}, {a, b}) and ({8}, {2, #}). None
of them iz u generalized-aquilibrinm-partition, rovertheless, ({z}, {a,b}) and {{b}, {8,4}) ave parfect
euilibriom profiles.’® This shows that Proposilian 5.1 does not yield necessacy conditions. On the
other hand, Example 3.1 shows that voting schemes exigt that do not have any pure-strategy perfect
equilibrium. Providing » iecezsary und sullicient condition for the existence of pure-strategy perfect

equitibrinm in a l-stage game remaine an apen question.

The next example will show that the requirement that the game is generic is needed for Proposi-

tion 5.1 to hold.

Example 5.3. The population is:
M=d12), °=ln,b 20l

There is only one periad; & = 1. The uwiilities of Lhe founders are:

(@ =3 m{el=4 wi({dl =2 w{{e.d}]l=1; u(5) =0, otherwisc.

wy{@) =4 wp({efl=1 w{{dh=3% w({e,d1=2; =(5)=0, citherwise.
Tounder 1 voting & and Founder 2 voting y is & generalized-pertition-equilibrium profile but the
game is not generic. Eliminating all weally doninated pure strategies, which cannot be employed
in a perfect equilibrium profile leaves us with the pure-siralegy profiles (0, 8), (8, {4}, {{6},9} and
{{a}, {6}, none of whick iz even an equilibrin profile.  This shows that requiting genericity is

neaded in Proposition 5.1.

An intereating application of Proposition 5.1 is the following:

FWate that l‘:{d}, {-ﬂ-_.b}:l can Le eliminated by suecessive weak domination.



Theorem 5.4. Let T' be 2 pame reprasenting 5 2-stage generic voting scheme, whose niililies obey
additivity across stapes and addifivity within sach stage {Assumption Bb). Undar these couditions,

I' has 2 porfect equilibrivm fn pure strategiss.

Proof. Any perfect equilibrium profile for I' must specify for each subgame of the second stage
a prafile under which each voter votes precisely for the zet of his friends {wha arP not already in
the soclety}, T'his is & perfect equilibrium of the subgame (Section 2, case & = 1) and nnique, by
genéricit}'. With this understanding, we can constrict a l-stage game I'! as wae done in Section 4.
"The proof will be concluded if we show that [ has & pare-stralegy perfect equilibrinm, as the
rombination of this strategy with the continuation is a perfect sirategy® for T. Ta achieve that, it
is sufficiant, by Proposition 5.1, te exhibit a generalized-pariition aquilibrium profile for 12, This
we are about to do by a2 consirucilon under which veters add candidates 1o the sociely pievewise;
There will be a variable set of candidates, called a corrent set, that grows, o7 stays put, as the vaters
add to in during the construction, uniil 1l eventually becumes the oulcume for Siage 1, as well as
an outcorne of I, We intraduce the [ollowing terminology: Let A be » cnrrenl st of candidates.
We say that 3, possibly cmpty, set of candidates taken from €7\ 4, is aptimal for soter i w.ri.
A, aud denoted X, {A), if it iz the hest 2ot of candidates that ¢ conld add to A, s0 as to increasze
his utility from the twa stages, Note ihai X;(A) cannot contain enemies of %, since such candidales
arc cncmics, and can anly cantribute nore enemies al Stage 2. {The [riends of ¢ will be brozght in

anyhow by ¢ at Stage 2] In symbols, X;(A) is characterized by

wi{ A U X A) )+ g en; (FPU AU {FOU 40 X(A))) >
(6.27)
wi{d UB) + wylen; (#" 0 Aule (FO U AU BY)), all B C fr; (% A).

{Tn this calenlation friends of 1 al Lhe second stage are omitted from bolh sides of each inequality.)
Here, wi{T) '= ¥, pwu(t), i (8) == {4: § € Be{{) N S}, en; {$) := {j: J € en(i) N 5} and

¥ 4 proof for any k-stage game it given in Thedrem 5.10.
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[c{B) = {£: £ e [r({) lor some § in B]. Sums aver the empty =2t are considered equal te zero.
By genericity, the set X(A) is nnique,
TEE CoRSTRUCTION:

Starting with a carrent sat A = B, & referee gpproaches the voters repeatedly, one by ome, aad
suggests (o Uhew W wdd cundidates to tha current sef. Fach approached voter i addy X;[A4) and
the ot AU X (A} bevomes 2 pew ‘carrent set’ A. The referee continues to approach the woiers,
perhaps approaching 2 voter several times, taking care pot te ignore voters whose epiimal addition
i nol empty. This assurcs that after a finfte numbcer of approaches, there comes a situation when
all optimal sets w.r.t. the curient 4 are emply for 20l volers. Al thi= the construction eids. This
tletermines a pure-strategy prafile {F;} cre, where Py is the set consisting of all the members that

vaber j added along the constroetion.

It follows [rom the construclion, that {F;};zp is a generaliced partition of & 1= Uigpe Py It
remains to show that it iz an equilibrivgn profile for IV, To this end we require a lemma, which

unfortunately s not touc if & > 2

Lemma 5.5. Ascume the conditions and notations of Theorem 5.4. Let A and I3 he two sels of
candidates, A C H, Lel C be a set of friends of a voter { satisfying CnB={. FAUC ~; A then

Bud -; B,

Proof. From the data il Toliows that the total weight of 1 from ' exceeds the absolute value of the
total weight of the new enemies that C bringe al Stage 2% When ' is added to B he hrings the
same number of friends, yamely |, and no pew enemies. Perlaps even less — the previous ones

that happen to he in BY 4. =

M Namdy, w;(0) + wolen; (e (&Y P {F U AN =0,



(Continuation of the proof of Theorem 5.4). If (Pi);cpo is not an equilibrium profile, then a
votor @ can benefit from a deviation. A devialiun means Lhat he deletes & zet 17 of candidates from
his vote £5 and adds a zet Q of candidates notin 5.1 At least one of these sets is not cmpty. The set
T, if nat empty, is a union of nonampty sets T;, Ts, .. . T, which are, respectivaly, subsets of hiis votes
Pl PR, T taken wh;m i was approachad at tirmes that we enumerate chronologically 1,2....r.
Denote by %5, 5, ..., 5r the current sets at theze times after his addition. Censider a hypothetical
sequence when all founders vote as in the construction cxcept that agent 7 votes I 4 TY af time 1,
FEAN(TLUT) ad bime 2, ..., P74 T al lime ¢ and sach time he alse adds the candidates of Q. The
end of this sequenve is the deviation, which, as we assumed, beneliled player 7. We wow inodify
thiz zequence in anch & way that player ¢ will continue to benefit and at Jeast as much, To thiz end,
add ¥5 to the hypothetical vote of voter { at all times, starting from time i Thiz will bepefit him
ar time 1. Indead, he would benefit if the current set were 5\ 17 berause X {5 \ F)= 8} is the
unique optimal response and =o, by Lemma 5.5, he wonld benefit by adding Ty to (5 \ THIU 3.
For LLe samea reason § would benefit by adding T3 at cvery part of the hypothetical sequence, since
ST S QUESH (T Ty U]} and Ty NQUES N (T VT - 0T =00 € {1,2,. .., r}. Aller
adding 7} we arc in an improvad deviation that starts at time 2. We make a similar madification
and cuntinue [or r timee. Eventually, we arrive at an improved deviation at which only (J is addad.
But this is impoesible, since the original construction ended when no voter could bencficially add

membera autside the current set, The contradicliun shows that we arc indeed al equilibrium. =

The construction in the above proof is not specific aboul the order in which the referee approaches
ibe voters. We are going to show that althangh different orders yield different equilibrium profiles.

the outcome 5 remains the same. Therefare, the perfec? aquilibrivm profile that is generated as

L i vrelevant i b aleo voles Tor AERRLS in S‘. P 50 wa aspome thal ha doss not,
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escrtbed tn Proposition 5.1 is the same, repardless of the ocder of approach.
Lemma 5.6, [f AC B C 9, then AU XA} C B UX(B) for every agent i in FU.

Proof. Assume negatively, that for some i in F?, T = (AUX(A))\(BUX(B)) # 0. By vplimality
of X;{A} and gencricity of [, it follows from {5.27), replacing & by X;{4}\ D, and noting that

DNnA=4{, that
wi (D) + welen (AP U AU (F U AUX (AN — wylen  (FOU AU (FPU AU (XA ) =

w (D) 4 welen (I (D) o [F“ AU {X AN D)) > 6.
(5.28)

TTaing {337} onve more, replacing 4, X,(A), B w B, X;{B), X;(B) U D, respectively, we obtain:
w; (D) 4 wi{en (DY i {F° UB U X(B)))) < 0. (5.29)

However, (AU X;{A})\ D C BU X(B), and enemies of # carry negative ntilities; therefore, the loft

side of (5.29) Is not smaller than Lhe left side of (5.2%) — a contradiclion. »

Covellary 5.7. Changing the order of the referes’s approaches lsade to the same final sel 5,

alihough the acnal votes of the players may be different.

FProof. Let 0=T°T?, ..., 77 = T be the sequence of “current sets’ generated by a different order
of approaches. We zhall show Lhat 2™ C 5 for every m and thersfore 7' C 5. Reversing the roles
of S and T one getz § C T and thizs concfudes the proof. Proceed by induction: Certainly 79 C §.
Suppose T™~t C 8 and 7' ¢ 5. Then, some ¢ in &% has X (T™ 1) ¢ &, Thus, & vandidate u
exists In X;[T~1), 4 ¢ §. From Lemma 5.5, € X;(T™1) € X,{5), which contradicts the fact

that the construction terminates whea X (5) =@ for all i. m

Une may naw ask whether o perfect equilibrium prolile is always unique under the conditions of

Theorem 5.4. The following example settles this question nesatively.
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Example 5.8. The set of founders is F© = {1,2}. The set of candidates is C* = {a,b,c}. k=2
and we assume pure friendship and enmity {Assumption 8a). fr(l) = {u},[x{2) = {b}, fr{a) =
fr (8) = {c}. The construction in Theatem 5.4 leads to § = B. However, it can be checked that
| and 2 voting for their fricnds al all stages and a and & vote for Lheir [tend at Stage 2 s ako a

perfect equilibrinvm profile.

T is interesting to find conditions that gouarantee that a pure-strategy gencralized partition cquilib-
rivin profiles adways existe. For w while we thought that this will always be the caze if additivily
halds within a stage and acrnss stages {Asaumption 3b), as Theorem 5.4 seems to lndicate. The
fallowing cxample shows that this is not true and. wmoveover, it may well be that no pure-strategy

parfect sguililsrinm exisls in {hiz case.

Example 5.8, The population is:
.F‘J = {1‘2}1 l:’ru = '[11161,1‘1} a.-‘j,: 1?31111121?;}"

The number of periods is & = 3. The weighte of each member of the population frem hring with

each other member, per period, are:

wila) = wi (b} = 100, wifz(] = wi(zg) = —200,

wyla) =500, wg(bd} =100, wa{m)=—600, wz(ma)=—200,
Weldy) = welaz) = welm} = 100, w,(y) = —200,

wyl 7z} = wp(mez) = 100,

W, {y)=1,

'wmg {y;l =1.

All other weighte are equal to —1. Utilities are caleulated by (2.3).
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The constroction of the pnique perfect equilibrivm profile will be carried by backwards induction,
starting from the Llind stage and working backwards towards the first stage, We shall demonstrate

that it must employ a mived-stratesy profile.

The third and lust stage. [n any perfect equilibrivm, at the last stage any memher of tha aociety

{elements of ™) invites exactly (e seb of his friends that are pot members of the society.

Thuy,** 1 and Ziuvite @ and & o invites £, 77 and ;b inviles oy and wg; wey lovites y and my

invites p.

The second stage. Based on their knowledge of what will happen in the last stage lor any con-
figuration of 7, the invitations at stage two in any perfect eqnilibrium can be calculatod by using

deleticn of dominated strategies.

Agents m; and my will invite 3, Agent & will invite oy and ;. Agent ¢ will lavite #; and zq, and
will alan wvite wey i 0 belongs to #1 (since in this case v will be invited at stage 3 by me who is
invited by ). Il ais in FP. then | will invite & {sinee in this case hoth 2, and #p will be invited by
g at stage 3). I g is not in F' then no vne will invite & and therefore 1 will not invite b if @ is nat

in E1,

The First Stage, Based on the above continuations, there are four possible configurations teo
censider tar the firsl stage. These constitute all the 2ubsets of {a, 8}, Neither 1 nor 2 can gain by

inviting any of the othera.

If the empty set s invited at stage 1 {i.e. F! = {1,21)}, then based on the previous analysis, the
continuation will have F% = {1,2}, ¥% = {1, 2, 0.6}. If only a is invited at stage 1, lhen the stream

will be FY = {1,2 g}, F% = {1.2,a.b, 2,2}, F* = {1, 2, @, b2, 79, 0y, mg .

13V ramind tha reader that the “invitations” are useless if the inviting agent is not 2 member of the sociaty,
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Il anly & is invited at stage !, then the stream will be F1 = {1,2,0}, F? = {1,2,b5,20,m}, F° =
{1.2,a,b T2, mz, ). And il both @ and b are inviled at stage 1, the stream will be F' ={1.2,a,b},

F? = {ligld!b:th'ﬂl ml?mi}h = {1,2”11,&,11,#?1,?1111 mﬂuy}‘

Using the data ahout the weights, we can calculate the payoffs for the pussible actions in the flrt

stage. The row player is player 1 and the column plaver is playver 2,
i ot & wl
200  |-302 —3 L2068
Pl eoo]  ses|  aw|  1es

—30% 302 205 D05
B0 806 185 195
p| -3 Fe0s -3 [-206
397, 195 397 195
b —2N5 — 25 —205 — 205
195 195 195 185

Since duminated slrategies are not used in any perfect equilibriumn of a normal-forin gume, we delete
daminated strategien for the twa players. We are left with Lhe following narmal-form payoff matrix

far the fitst 2fage:

d ¢

0 200 —302
600 896

=) —205
397 195

Clearly, there is no pure-strategy perfect equilibrium, and the only perfect equilibrium with pure
noves at stages 2 and 3 consisle of using mixed sirategies in the first stage — Player 1 vuling for
both the empty set and {b} with poitive probabilitics, snd Mayer 2 voling for both the empty set

and {a} with positive probabilities.

This example damonstrates that assumption 8L of Section 2 is not enough to guarantee the existence

of a pure-strategy perfect equilibrium,

We vonclude LLis section by exlending Proposition 5.1 to several-stage voling schemes.



Theorem B.11. Let [ he a game representing a genertc voting scheme, obeying additivity across
gtages (Assumption Sc). If one can work backwards on all subgaiues, as described in Section 4,
tinding sebs of candidaies obeying Lie conditions of Proposition 5.1, ore abtains a perfect equilibriem

for T In pure afrategies

Proof, Lel o be the sirategy poofile consiructed as in the theorem. Based an ¢ we can constroct
1-stage games 2t every start of 2 subgame, as was done for T! a1 the beginning of Section 4. We
then construct a test sequence for every 1-stage game that converges to the restriclion ol for that
l-stage pane, such that @; is a best reply [or each <lement of the sequence, for each veter. Thia can
be dane as showm constructively in the proof of Proposition 5.1, Note that by generieity, the best
reply is unique. Moreover, it continues to be a best reply even if the payoff vectors at the endpoints
are slightly modified. Such modifications are, in fact, created from the tes) sequences of the games

at the next stages

To construct a test sequence far the global game T, cut [tom each l-stagwe lest @pquence enangh
elements <o that, together, the remaining parts will cause pertnrbations so small that a;, for cach
iy will remain a best reply also [or the perturbed payoff vectors. The existence of such a scquence

shows that ¢ is a perfect equilibricm point. =
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6. Appendix

In this appendix we shall discuss the merits and limitations of the requirement that the agents use only
history-independent strategies. This assumption certainly simplifies our analysis. One can try and claim that
it is appropriate if ballots are secret, but this is not good enough since part of the history is known by

watching who was elected at each stage.

On the face of it this requirement looks innocuous: for example, you come to stage 3 and have 5 stages to
go. You know who are the voters and who are the candidates. You have all information concerning
priorities of each agent. You have to make your choice. Why should you care how you came to this

situation? Isn’t it spilt milk?

Well, — not always!

If one is interested only in equilibrium outcomes that can be achieved in pure strategies, Theorem 6.1 below
shows that the same stream of members can be obtained as an equilibrium outcome using only history-
independent pure-strategy profiles. Example 6.2 shows that this is not the case when mixed strategies are

being considered.

One can claim that limiting the agents to history-independent pure-strategy equilibrium profile is not a good
restriction, if an agent can profit by deviating to a mixed, history-dependent strategy. Theorem 6.3 proves

that this cannot happen.

Theorem 6.1. Any equilibrium outcome that can be achieved in pure-strategy [subgame-perfect] profiles

can also be achieved with pure-strategy history-independent [subgame-perfect] profiles.

Proof. If there is only one original founder, then, as long as he votes for nobody, we can regard his

votes as history-independent since he can choose his votes without looking at what happened.
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Sox, we can assume, without loss of generality, that there are at least Lwo ariginal founders. Let
7 = [7)wen be & Nash oquilibriom profile cbtained by pure sirategies. Let 7 = (1)iew be a
history-independoul siratepy prolile defined by

Rl i F = Itg),

.1
N, atherwise. (6.1)

e, PP = {

Here, if{c) = {F® Fl(g),..., F*" o)} and of{h*{z)) is the vote cast by agent 1 at slage f, given

the history vp to that stage.

The path followed by profile 7 is the same as the ane followed by o, hence ¥ yields the same strezm
of members as «, and therefors the same wiility outcome: [¥ remains to show that ¢ is a Nash
cquilibrinm. Assume that agent 4 can profit by deviating alone from «;, using strategy 'r; . Lar #y
be the first stage in which r, # =. Since there are at least two founders, © generates the siream

(FO FYa), ... o T,:E"]I,N. v M Plaver ¢ can deviale also from ¢ and obtain the zame

stream of members. Indewd, all he has to da is deviale from slage 4y, voling as in = ak that sTage
and voilng N afverwards, This will vield him 2 higher utility, contrary to the fact that ¢ wae an

equilibrium profile.

It 7 is ako subgame-pesfect then so is + and this completes the proof. w

Notc that a similar theerem may not lold when we deal with olher refinemenis. For example, in

weneral 7, as construcied above, will not he a perfect equilibrium, even if & was perfact.

Unfortunately, Theorem 6.1 does not hald, in general, if o 32 a mixed strategy equilibrium profile.

The pext example will demonstrate this fact.

Example 6.2, The papulation ia:

FO={1,2}, C"={e, a2 21,503}
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The number of Stages is & = 4. The utilities of each member obey additivity within cach etage and

across sbages [Asswnption 8b). The weight functions are:

wyla) =10, wfe)=-1, wirn)=10, wyle)=-10, wlz)=-100,
uafar) =—1, wales) =0, wp{E) = —10, walz}=10,  wplz) = - 100,

oy (1) = =2, Wa {11} =-2.
All other utilities pot given above are equal to —1.

Consider the following strategy profile.

At Stage 1, Player ! randomizes (with cqual probabilitics) belween {u;} and @, while player 2

randomizes [with equal prababilities] between {ag} amd §,

At Stage 2, all members vote for ey, 45},

AL Slage 3, il 1FY| was even, then all members invite {z1}. Otherwise, they all invite {x;}.
At 3tage 4, all invite thelr own friends.

If there iz any detectahle deviation from thiz path before Stage 4, all membera invite ¢ and their

own friends iminediztaly after the deviation iz detected.

This is a Nash equilibrium. Neither founder can gain with an undetectable deviation at the first
stage, and 2 detectable deviation canses a losa. Any deviation that makes a differcnes at Stages 2
or 3 is detectable and cavees a loss. There are no profitable deviations at the last slage. The
strategies are history-dependent, as if 2 = {a, ¢a}, then members of F* have diffcrent actions for

Stage 3, depending ot whother the number of members in F? was even or add.

The onteome of the equilibrinrm i3 one af the four following siresms, sach oecurring with equal



nrohakbility:
EFiu r :bld] ={@r{uls“‘2}1 {ul:ﬂ‘hmi}r 'Ilﬂ'hﬂ"hzlti‘ﬂ}

(F, ... P‘] ={{a1}, {e1, 02}, {61, 02, 22}, {01, @3, 21,22}
(FUoo o P =({as), {@n, a5}, (o, gs, 22 ) {an, w0003}

|:F1, - ,F*) :I:{ﬂ;_, ﬂg},l {ﬂ-hﬂg}a {d],ﬁg,ml},{ﬂj,ﬂg.:ﬂl..ﬂ.‘z}
Mole that at Slape 3 either wy or @3 i invited, depending on the cardinality of F'. However,

sinee F? is the same for each of the fonr ztreams, history-independent sirategy canmat specify
different aclivns for the third stage. Therefore, this outcome, which was achieved in eguilibrium

with histarydependent strategies, cannot he supparied with histary-independent strategies.

Restricting the strategy space to pure history-independeant stratogy profiles raizes the doubt whether
equilibsinm polnts in this spave might cease 1o be ln equilibrivm when one exteads the stratvegy
space and allows for mixed bistory-independent atrategies. That this is not the case follows from

the [ollowing theorem:

Theorem 8.3. fet ' be a game reprasenting 3 voting scheme in which the players are aflowed
ta sefect oniy pure history-independent strategies. Let o be ar equilibrivin profife for this game.
Lat T be & gawne obtained from [ by extending the strategy space and allowing mixed xard hisiory-

dependent sfrategies. Under these conditions, # is still an equilibrium profile for T,

Prool. Suppose player 1 can deviate from o in T, against o.;. Then, he can benefit by chocsing
an appropriate pupe-strabegy best reply 7;. Thiz strategy may be history-dependent, so we define

ancther strategy 7/ hy
Ti{ﬁ;htfd_;,fg:l], if FR-l = Fr'_ll:o'_h‘r;'L

B, ollierwise,

i, P = { (6.3)

Stealewy v 1= pure, history-independent, becanze it selects the same scb at stage $ whenever the set

of voters is F* 1 (o_;, i} and selects the same {emply set), otherwise, Moreover, the path under



{7_z, 7]} coincides with the path under (o_;, r}, thus yielding the same stream of members. We
have proved that there exists a pure, histary-independent strategy = that vields player { more than

o; against o_;. This contradicts the fact that & wag an equilibfium point in T =
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