
    

Instituto Juan March 

Centro de Estudios Avanzados en Ciencias Sociales (CEACS) 

Juan March Institute 

Center for Advanced Study in the Social Sciences (CEACS) 
 

 

 

 

 

 

 

Deviation, inequality, polarization : some measures of social diversity 

Author(s): Escobar, Modesto 

Date 1997 

Type Working Paper 

Series Estudios = Working papers / Instituto Juan March de Estudios e Investigaciones, 

Centro de Estudios Avanzados en Ciencias Sociales 1997/102 

City: Madrid 

Publisher: Centro de Estudios Avanzados en Ciencias Sociales 

 

 
 

Your use of the CEACS Repository indicates your acceptance of individual author and/or other 

copyright owners. Users may download and/or print one copy of any document(s) only for 

academic research and teaching purposes. 

 

 



���

'HYLDWLRQ��LQHTXDOLW\��SRODUL]DWLRQ��6RPH�PHDVXUHV�RI�VRFLDO�GLYHUVLW\

It can be hardly denied that the issue of inequality is crucial in the study of society. The

concept of diversity can already be found in pre-sociological theories, from the hierarchical

conceptions of Plato to Rousseau’s discussion of the origin of inequality. Later, the founding

fathers of the discipline were obviously concerned with the study of divisions in society,

formulated in the concepts of class in Marx, status in Weber and mechanic/organic solidarity in

Durkheim. Thus, Nisbet considers status to be one of the five key ideas of the sociological

tradition. Since similarities and inequalities within and between societies must be an object of

study for sociologists, precise tools are needed to measure social diversity, not only in order to

study society but also from a strictly methodological point of view. This paper presents some

results of the measure of variation, one of the most controversial issues in most empirical studies

of dispersion, including the measure of inequality, which plays an important role in economics

and sociology.

All too often, descriptive statistics appears to be the science of percentages and averages,

because many general works use these statistics to simplify and illustrate their arguments.

However, in order to obtain a complete picture of the structure of a society, the distribution of

the variables is as important as their means. In the same way, advanced statistics is essentially

based on the concept of variance. In general, most of the techniques employed to explain causal

relationships between variables use the term "percentage of explained variance".

Before presenting a number of statistics whose main purpose is to quantify diversity within

populations analyzed through samples, it is perhaps necessary to clarify the nature of three

related, but different, concepts used in the study of diversity: deviation, inequality and

polarization.

If individuals in the population are distant from a certain point of reference, such as the

arithmetic mean, we speak of GHYLDWLRQ. This means that there is a benchmark for comparing all

individuals. The further they are from this point, the larger the measure of deviation. When we

speak of LQHTXDOLW\, there is no single point of comparison; rather, each individual has to be
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compared with all the others in the population. And finally, the concept of SRODUL]DWLRQ (or the

opposite concept of concentration) indicates the extent to which the values of the variables are

close or far away from the two extremes of the distribution. It is obvious that these three notions

of diversity are closely related to each other, and that so too are the statistics used to measure

them; an increase in a measure of deviation in most cases appears to correspond to an increase

in the measure of inequality. As a result it is very often the case that a certain statistic is used to

take into account some aspects that could be explained in a better way by a different kind of

statistic.

In this paper I propose a family of statistics to treat the subject of social diversity from the

perspective of examining measures of both deviation and inequality.

One of the most frequently used measures in complex statistical analysis is that of variance,

which is the average of the squared deviations of the values of the variable around the central

mean. The specific properties of this statistic may be appreciated by imagining a situation in

which four people are eating four indivisible chickens in a restaurant, so the average of chickens

is one (see Table 1). Apart from equal treatment, whereby each person eats his/her chicken, there

could be four cases of inequality:

   (a) Only one person does not eat his/ her chicken, so another eats two,

    (b) Two people do not eat at all. In this case, two situations are possible:

  (b1) The other two people eat two chickens each, or

  (b2) The third person eats one chicken and the fourth eats three.

    (c) Three people do not eat at all and the fourth one eats all the chickens.

In the case of equality there is null variance: since everyone is at the central point, there is

no variation. In case a) two people deviate one unit from the mean. As there are four people in

total, the variance is a half unit. In case (b1) the variance is one since they all deviate one unit

from the mean. Cases (b2) and (c) are more interesting. In (b2) one person eats two more
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chickens than the mean, so the square of his/her deviation is four and the average of the total

deviations yields a variance of one and a half (equal to six over four). In the final situation the

variance is equal to three, as the square of the deviation around the mean for the person who eats

the four chickens is nine.

This example illustrates two characteristics of variance. First, that this increases considerably

for variables with values which are very distant from the mean (the case where a single person

eats the four chickens). Secondly, the variance is measured in a magnitude that is the square of

the magnitude used for the original values of the variable. In this example, the statement that the

variance is three means that, on average, people deviate from the mean three "square chickens".

For this reason, it is often better to work with the original magnitude of measurement instead of

with its square, which is why it is very useful to give the square root of the variance, known as

standard deviation. Thus, three "square chickens" become 1.7 chickens.

The mathematical properties of variance are as follows:

(1) It is always greater than or equal to zero.

(2) It can be obtained from the difference between the average of squares and the square

mean.

7DEOH��� 'LVWLEXWLRQV�RI�LQHTXDOLW\�IRU�IRXU�XQLWV

Equality Inequality
a b c d

First person 1 2 2 3 4
Second person 1 1 2 1 0
Third person 1 1 0 0 0
Forth person 1 0 0 0 0

Mean 1,0 1,0 1,0 1,0 1,0
Variance 0,0 0,5 1,0 1,5 3,0
St. Deviation 0,0 0,7 1,0 1,2 1,7
Mean Dev. 0,0 0,5 1,0 1,0 1,5
C.of variation. 0,0 0,7 1,0 1,2 1,7



���

(3) If a variable is constant, its variance is equal to zero.

(4) If a constant C is added to a variable, the new variable has the same variance as the old

one.

(5) If a variable is multiplied by a constant C, the new variable has a variance that is equal

to C2 the variance of the old variable.

(6) The variance of the sum of two variables is equal to the sum of the variance minus twice

the covariance between both variables.

One drawback of variance is that it is an absolute coefficient as measured in a magnitude that

is the square of the magnitude used for the original values of the variable. As explained above,

one way of avoiding this problem is to use the standard deviation. However, two difficulties

remain even when this is done. First, it is not easy to conclude whether the variable is well or

badly distributed; in other words, there are no points of comparison to evaluate the degree of

dispersion of the variable (e.g., what exactly does it mean to say that the standard deviation of

the variable is equal to three or to one and a half?). Secondly, it is impossible to compare the

dispersion of two variables measured in different magnitudes (e.g., if, in our example, drinks

were studied , could we say that this second variable has greater dispersion than the first?).

All these problems can be overcome through the use of measures of relative (or according

to Weisberg [1986]) normalized) variation, such as the well-known Pearson coefficient of

variation. The aim of this paper is to analyze the problems of using this measure and to propose

another coefficient which is free of these drawbacks.

Relative measures are those which are not expressed in any magnitude. Of these the best

known are obviously percentages and proportions. Both are obtained with a ratio of similar

quantities, and therefore, the magnitude of measurement is eliminated. For instance, when

dividing people by people we obtain a magnitude comparable to the one resulting from dividing

pesetas by pesetas, even if people are not comparable to pesetas. It is important to note that in

a ratio of different magnitudes, both must be given, whereas this is not the case in a ratio of equal

magnitudes as the result is a relative measure. A clear example is speed: when the number of
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miles driven is divided by the time, the result is given in miles per hour. However, when dividing

votes for a political party by the total number of votes cast in the election, the resulting quantity

is not expressed in any magnitude.

Most statistics textbooks include a relative measure of variance, known as the Pearson

coefficient of variation. This is defined as the ratio between the standard deviation and the mean.

In order to see an example of its application, let us consider two variables in a population —age

and number of children— and assume we are interested in stating which variable shows greater

variation. The first is measured in years, the second people. It is clear that the corresponding

means, variances or standard deviations are not comparable. For instance, consider the case of

the Spanish capital, Madrid (see Table 2). The average age of the inhabitants of Madrid is 38.2,

the standard deviation is 22.1, implying that it could somehow be said that the average deviation

per inhabitant is of 22 years. As for the second variable (number of children), women over 15

have, on average, 1.5 children, with a standard deviation of 1.7. This standard deviation may

seem to be quite high when compared with that for the variable age. However, when we use

coefficients of variation, 58% for age and 116% for number of children, we reach the right

conclusion -that is, the variable age has a smaller deviation than the variable number of children.

It is important to note that the second figure, 116%, should make us wonder about the possible

limits of this coefficient of variation.

If these statistics are compared with those for another Spanish city, say Salamanca, the

population is a bit younger and on average, women have more children. It is also possible to

compare the measures of absolute and relative deviation in the two cities. For the variable age,

7DEOH��� $JH�DQG�FKLOGUHQ�LQ�WZR�6SDQLVK�FLWLHV

CITY
Madrid Salamanca

N Mean St. Dev CV CVb N Mean St. Dev CV CVb

AGE 3.113.818 38,2 22,1 58% 46% 162.737 37,2 22,6 61% 47%
CHILDREN 1.385.577 1,5 1,7 116% 56% 70.917 1,7 1,9 114% 59%
Source: INE.Sociodemografic Poll (1991). Elaborated by the author.
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both the standard deviation and the coefficient of variation are smaller than in Madrid (which

means that there will be fewer children and fewer elderly people). For the variable number of

children, the absolute magnitude indicates greater dispersion in Salamanca whereas the relative

magnitude shows greater dispersion in Madrid. It turns out that it is better to use this last statistic

for the comparisons.

This coefficient of variation has the following properties:

(1) It is equal to zero for constant variables.

(2) It may take negative values for variables with negative means.

(3) It will take extremely large values if the mean is close to zero, and be infinite if the mean

is zero.

(4) If a (positive) constant C is added to a variable, the coefficient decreases.

(5) If a variable is multiplied by a constant C, the coefficient does not change.

(6) The maximum value of the coefficient for a positive variable, that is, one without

negative values, isQ − 1.

It follows that it is advisable not to use the coefficient of variation for variables that take

negative values or with means close to zero. Actually, this coefficient can only be used for those

variables with values bounded from below at zero, the extreme situation being the case where

all individuals except one have the value zero and the other one has the valueQ [× . To return

to the example of the four chickens, this would happen when one person eats all the chickens and

the other three eat none at all. In this case, the standard deviation is 3 and, since the mean is equal

to one, the coefficient of variation is also 3, which yields a value of 173% in percentage terms.

One step that can be taken to prevent the maximum value of the coefficient of variation

changing with the distribution would be to divide it by its maximum value Q − 1. This would

give a value of 100% instead of 173%, as the square root of n-1 is equal to the square root of 3.

The value of 100% would indicate that this distribution has the maximum possible variance.
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Thus, the adjusted coefficient of variation would be defined as

��Q[

V
 &9 DG (1)

However, this measure is very weak, especially when n is large and the hypothesis of an

unlimited value for the variable cannot be sustained. For instance, in a poll of 1000 individuals

with an average age of 35 and standard deviation of 20 years, when calculating the maximum

coefficient of variation, it must be assumed that the age of 999 individuals is zero and the age of

the other individual is 34965 = 999 x 35, which is of course completely unfeasible.

Another measure of relative variation could be obtained by dividing the standard deviation

by the maximum possible deviation, as long as the variable takes values in a bounded interval,

or in other words, as long as the range of the distribution is known. In this case, the most

unfavorable situation would be that in which the variable takes the minimum value in half of the

cases and the maximum value in the other half. If we assume that nobody can eat more than two

chickens, then the range will be two and the situation in which two people eat two chickens each

and the other two eat none will give maximum variance (Weisberg 1986:53). In this case the

mean would be

;  
; � ;

�

max min
(2)

 And the variance with maximum polarization would be as follows:

9DU
; ;

PD[

PD[ PLQ=
−( )2

4
(3)

Nevertheless, this calculation of maximum deviation suffers from a major limitation: it

assumes a constant mean, even if the mean of the distribution was not the equidistant point from

the maximum and minimum value. As a result, this measure tends to overestimate the maximum

variance of the distributions.
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In this paper I try to develop a measure of maximum variance which takes into account the

sample mean in variables with values in a bounded interval, and has all the desirable properties

of the measures presented above.

Let us consider a bounded variable X which takes more than two values. The case of

maximum variance would be that with precisely two values, the limits of the interval. Let us

denote the mean of X from the proportions of the cases of the minimum and maximum values:

min max

min min max max

S � S  �

;  S ; � S ;







(4)

So, it is easy to calculate the maximum variance 

max max max min min9DU  � ; � ; � S �� ; � ; � S
� � (5)

which, using basic algebra, can be simplified as follows:

9DU ; ; ; ;
PD[ PD[ PLQ

= − −( )( ) (6)

The use of this measure may be illustrated by taking a simple case where the sociological

identification of an individual interviewed in an opinion poll is measured on a scale from 1 to 7.

If the sample mean was 4, that is, the middle point, the situation of maximum polarization (or

maximum variance) would arise if 50% of the people questioned answer 1 and the other 50%

answer 7. In this case, formula 2 would give a maximum dispersion of 9 (Table 3). The

distribution given on the left side of Table 3 shows that all the opinions deviate three points from

7DEOH��� &RPSDULVRQ�RI�PD[LPXP�YDULDQFHV

0HGLD � xi fi xifi (xi-µ)2fi 0HGLD � xi fi xifi (xi-µ)2fi
Extreme left 1 0,50 0,50 4,5 Extreme left 1 0,67 0,67 2,667
Extreme right 7 0,50 3,50 4,5 Extreme right 7 0,33 2,33 5,333

µ= 4,00 s2= 9,00 µ= 3,00 s2= 8,00
Max. var. (W)= 9 Max. var. (W)= 9
Max. Variance= � Max. Variance= �
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the mean in absolute terms. The distribution on the right side corresponds to a sample mean of

3; in this case, two thirds of the population would opt for 1 and only a third for 7, with a

maximum dispersion of 8.

Once the maximum variance is known, the maximum standard deviation can be obtained by

simply calculating the square root. It then becomes possible to obtain two interrelated measures:

a proportion of the ERXQGHG�YDULDQFH, PVb, which is the ratio of the empirical variance to the

maximum variance conditional on the empirical mean, and a ERXQGHG�FRHIILFLHQW�RI�YDULDWLRQ,

CVb, which is the ratio between the corresponding standard deviations. That is to say,

D

�

D D

39  
V

� ; � ; �� ; � ; �

&9  
V

� ; � ; �� ; � ; �
 39

min max

min max

(7)

These two measures have the desirable property of taking values between 0 and 1. The

minimum value is zero when the variable has zero variance, and equal to one when the variable

takes only two values that are precisely the limits of the distribution. Moreover, they can be easily

obtained from each other as (7) suggests.

Both measures, in particular the bounded coefficient of variation, given that it generally takes

higher values, are useful for comparing the variability between measures with different scales of

measurement. To return to the example of age and number of children in Madrid and Salamanca,

the coefficient of variation was equal to 116% for the variable number of children, and to 58%

for the variable age. Using the bounded coefficient of variation,1 the percentages are 56% and

46% respectively in Madrid, and 59% and 47% in Salamanca, figures that correspond more

closely to the general notion of percentage. Hence these results confirm the scant variation

between the two cities.

                                                

1 The minimum value is zero for both variables, whereas the maximum value is assumed to be 8 for number of
children and 98 for age.
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Moreover, unlike all the other measures of dispersion, these new coefficients have the

attractive property of being invariant with respect to linear transformations. In other words, these

coefficients do not change when a constant is added to the variable or the variable is multiplied

by a constant. This is not the case for the standard deviation (or variance), which changes when

the distribution is multiplied by a constant, or for the coefficient of variation, which varies with

the addition of a constant. This property is particularly advantageous in the field of social

sciences, in which there is a need for measures that are independent of the magnitude of the scale,

since most measurement scales are arbitrary. For example, why measure ideology on a scale from

1 to 10, rather than 0 to 20? Likert scales, in which the items —usually measured from 1 to 5—

are often inverted by means of the formula X’=6 - X and the traditional coefficient of variation

changes depending on whether or not it is inverted, is a clear example.

The variability of this index in the context of 5-point Likert scales is analyzed in Figure 1.

To start with, the denominator of the proportion of variance, that is, the maximum variance, is

a parabolic function that is inverted with respect to the mean of the variable. It is logical to think

that if on a scale of 1 to 5 the mean is 1, then the maximum variance will be zero since the

variable must take the value 1 as it cannot take any value below 1. In the same way, the

)LJXUH�����0D[LPXP�YDULDQFH�E\�LWV�PHDQ
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maximum variance will also be zero if the mean is 5, as the variable cannot take any value above

5. The maximum variance in the distribution corresponds to a mean of 3. In this case, 50% of the

individuals will have the minimum value (1), and the other 50% will have the maximum value

(5), which implies a variance of 4. With intermediate means, the maximum variance must be

between 0 and 4. Thus, for example, if the sample mean is equal to 2, only with 75% of 1s and

25% of 5s (this is the only possible combination of 1s and 5s that yields a mean of 2) we would

obtain maximum variance (equal to 3). If the mean were 4, the situation would be symmetrical

with a maximum variance also equal to 3.

Figures 2 and 3 compare the bounded coefficient of variation and Pearson coefficient of

variation. If the mean is constant, both coefficients show a similar pattern with respect to

variance, the bounded coefficient usually being slightly higher. However, their evolution with

respect to the mean is quite different. Thus, the range of oscillation is lower for the bounded

coefficient, and while the Pearson coefficient decreases as the mean increases, the bounded

coefficient oscillates symmetrically.

)LJXUH�����&RHIILFLHQWV�RI�YDULDWLRQ�E\�YDULDQFH
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 In order to facilitate the interpretation of these statistics, Table 4 presents eight hypothetical

distributions of ideology with their corresponding means, standard deviations, and percentages

of empirical deviations, grouped in pairs. The first pair corresponds to the case in which all the

individuals in the population have the same ideology (4 in distribution A, 3 in distribution B).

This implies variance equal to zero, a maximum deviation of 9 and 8 respectively, and a

proportion of bounded variance, PVb, also equal to zero. The situation described by distribution

C has a mean of 4, with half the individuals located on the extreme left and the other half on the

extreme right, that is, the population is split equally between the limit values of the distribution.

In this case, the variance is maximum, so the PVb is 100%. The same PVb is obtained in

distribution D, as although the mean is not 4, the variable only takes the limit values. The other

four distributions represent less extreme situations. In cases E and F, 50% of the individuals are

at the mean, and the rest are split equally at the limit values of the distribution. The proportion

of bounded variation is now equal to 50%, and the bounded coefficient of variation is equal to

71%. In cases G and H, 50% of the individuals are again at the mean, but the rest take not only

limit but also intermediate values. Thus, this bounded coefficient will decrease in a proportion

that is always lower than the number of individuals with intermediate values. Thus, in G, 46%

)LJXUH�����&RHIILFLHQWV�RI�YDULDWLRQ�E\�PHDQ
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of cases with respect to E have moved away from the limit values with a diminution in the CVb

of 21 percentage points, and the same is true for H where only 10% of the cases take the limit

values and so, in comparison to F, 40% of the individuals have moved away from these limit

values.

7DEOH��� 6LPXODWHG�GLVWULEXWLRQV�RI�LGHRORJ\

'LVWULEXWLRQ�$ xi fi xifi (xi-µ)2fi 'LVWULEXWLRQ�% xi fi xifi (xi-µ)2fi

Center 4 1,00 4,00 0 Center-left 3 1,00 3,00 0,00
µ= 4,00 s2= 0,00 µ= 3,00 s2= 0,00

PVb= 0% PHa= PVb= 0%

CVb= 0% CVb= 0%

'LVWULEXWLRQ�& xi fi xifi (xi-µ)2fi 'LVWULEXWLRQ�' xi fi xifi (xi-µ)2fi

Extreme Left 1 0,50 0,50 4,5 Extreme Left 1 0,67 0,67 2,67
Extreme Right 7 0,50 3,50 4,5 Extreme Right 7 0,33 2,33 5,33

µ= 4,00 s2= 9,00 µ= 3,00 s2= 8,00
PVb= 100% PVb= 100%

CVb= 100% CVb= 100%

'LVWULEXWLRQ�( xi fi xifi (xi-µ)2fi 'LVWULEXWLRQ�) xi fi xifi (xi-µ)2fi

Extreme Left 1 0,25 0,25 2,25 Extreme Left 1 0,33 0,33 1,33
Center 4 0,50 2,00 0 Center-left 3 0,50 1,50 0,00
Extreme Right 7 0,25 1,75 2,25 Extreme Right 7 0,17 1,17 2,67

µ= 4,00 s2= 4,50 µ= 3,00 s2= 4,00
PVb= 50% PVb= 50%

CVb= 71% CVb= 71%

'LVWULEXWLRQ�* xi fi xifi (xi-µ)2fi 'LVWULEXWLRQ�+ xi fi xifi (xi-µ)2fi

Extreme Left 1 0,02 0,02 0,22 Extreme Left 1 0,06 0,06 0,24
Left 2 0,23 0,45 0,90 Left 2 0,31 0,62 0,31
Center 4 0,50 2,00 0,00 Center-left 3 0,50 1,50 0,00
Right 6 0,23 1,35 0,90 Right 6 0,09 0,54 0,81
Extreme Right 7 0,02 0,17 0,22 Extreme Right 7 0,04 0,28 0,64

µ= 4,00 s2= 2,25 µ= 3,00 s2= 2,00
PVb= 25% PVb= 25%

CVb= 50% CVb= 50%
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7KH�ERXQGHG�FRHIILFLHQW�RI�YDULDWLRQ�LQ�GLVWULEXWLRQV�RI�SUREDELOLW\

 An important question regarding the use and interpretation of these coefficients is the value

they adopt for different distributions of probability. Let us consider three of the most widely used

distributions in statistics:

The distribution function of a uniform distribution in [a,b] is

DE
 I�[�

−
1

(8)

The parameters a and b are respectively the minimum and maximum possible values of the

distribution.

Its mean and variance are equal to

(�;� 
D�E

�

9DU�;� 
�E � D �

��

�
(9)

Thus the maximum variance will be equal to

max9DU  
�E � D �

�

�

(10)

And, therefore, the proportion of bounded variation and bounded coefficient of variation will

take the following values :

D

D

39  
�

�
 �����

&9  
�

�
 �����

(11)

The probability function of a binomial distribution with parameters n and p is
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The minimum and maximum possible values of this distribution are respectively 0 and n. Its

mean and variance are equal to

(�;� QS

9DU�;� QS��� S�
(13)

Thus, the maximum variance will be equal to

max9DU  �QS ����Q � QS� Q S��� S�� (14)

And, therefore, the proportion of bounded variation and bounded coefficient of variation are

functions of n, the number of times the binomial experiment is repeated with

D �

D

39  
QST

Q ST
 
�

Q

&9  
�

Q

(15)

The density function of the standard normal density (µ=0, σ=1) is

I�[� 
�

�
H

]

�

�

π
(16)

The calculation of the bounded coefficients is more problematic, since the normal

distribution does not take values in a bounded interval but can in fact take any real value. To

escape this problem, we may restrict the values of the distribution to the interval with limits

above and below three times the standard deviation. Since this assumption does not apply in a

mere 0.3% of the cases, the impact of the contribution of these exceptional cases to the final

statistic can be presumed to be slight. Thus, the calculation of the bounded coefficients for the

normal distribution is standard, with a PVb of 11% and a CVb of 33% .
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D&9  
�

�� �������� ���
 

�

�
 ��� (17)

These results can be used as a benchmark to compare the variability of the distributions used

in practice. The distributions with a coefficient of bounded variation below 33% will show less

deviation than the normal distribution, those with a coefficient of over 33% will show more

deviation than the normal distribution, and when the coefficient exceeds 57.7% we may speak

of greater deviation than the uniform distribution.

7KH�OLPLWV�RI�RWKHU�FRHIILFLHQWV�RI�GLYHUVLW\

This is obviously not the only coefficient of diversity which ranges between 0 and 1,as a

number of other such indexes may be found in the literature.

One of these is the well-known *LQL�LQGH[, an index of concentration which is widely used

to measure economic inequality. It can be calculated through two different but interrelated

formulae: one takes the sum of the difference between percentages of cases (pi) and percentages

of quantities (qi = xi * pi), while the other consists of the sum of the absolute values of the

differences between each value of the variable and the rest.

ML���
��Q��Q;�

_;�;_

*

3

43

 *
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∑∑

∑

∑

(18)

As long as the variable takes positive values, this index takes values between 0 and 1.

However, its values account for a different kind of deviation. Thus, although when all pi are equal

to qi, that is to say, when the variable takes the same value for all individuals, the Gini index is

equal to the minimum value (0) and so are the coefficients of variation, the situation changes for
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the maximum value (1). The Gini index is only equal to 1 if the variable takes two different

values and the minimum is 0, while the proportion of bounded variance does not require the

minimum value to be zero in order to be equal to 1. Moreover, the Gini index adjusts quite badly

when the variable takes negative values and, like the Pearson coefficient, it does not change when

the variable is multiplied by a constant but it does change when a constant is added to the

variable.

The same corrections made above for variance and standard deviation can be applied to this

index. If the minimum value of the variable is other than zero,2  the maximum value of the Gini

coefficient would be obtained by

max
min

*  ��
[

[
(19)

The adjusted coefficient is defined as

D*  
*

*max
(20)

And this has the following properties:

1) It takes values between 0 and 1.

2) If a constant is added to a variable, the adjusted coefficient does not change.

Another index of dispersion with values between 0 and 1 is the LQGH[�RI�TXDOLWDWLYH�YDULDWLRQ,

which is obtained from

NN

S���

 ,9&

��
L

N

�

)1( −

∑ (21)

                                                

2 It is assumed that there are no negative values.
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This index only makes sense for non-metric variables. It measures the degree of

concentration of individuals in certain categories of the variable and does not therefore show the

distance between the values of the variable. The coefficient is equal to zero if in 100% of the

cases the variable has the same value, and is equal to 1 if all the values of the variable have the

same frequency. The disadvantage of this index is that it cannot be used correctly in the case of

variables where the distance between different values matters. Thus, for a variable which takes

the values strongly in favor of, in favor of , against and strongly against, the result would be the

same if the only values found were strongly in favor of and strongly against as if the only values

found were strongly in favor of and in favor of, when greater dispersion obviously exists in the

first case.

Another coefficient that can be applied to nominal variables is that of HQWURS\. This measure,

which comes from the theory of information (Kripendorff 1986), represents the amount of

uncertainty provided by a variable. If all the cases belong to the same category, then there is no

uncertainty; if all the cases are equally split among the different categories, then there is total

uncertainty.

The coefficient of entropy is given by

+  S
�

S
L �

Q

L �

L

∑ log (22)

Its values are in the interval between the extremes of 0 and log_2(n). Therefore, a normalized

coefficient with limits between 0 and 1 may be obtained by dividing by log_2(n). However, like

the index of qualitative variation, this coefficient is not sensitive to the values that the variables

may take; as a result, while it can be applied to nominal variables, it cannot be used in the case

of the variables we are interested in, that is, quantitative variables with values in a bounded

interval.

However, the statistical literature offers us another coefficient which is very suitable for the

study of inequality of distributions: the 7KHLO� LQGH[. This coefficient is obtained from the

coefficient of entropy as
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+  T
�

T
L �

Q

L �

L

∑ log (23)

where the index of entropy is calculated from proportions of quantities rather than

proportions of the variable.

Since the more unequal the distribution of the variable, the greater H will be, it must be

inverted so that the Theil index takes values between 0 and log_2(n).

S

T
T �

+��Q +

L

L

�L

Q

 �L

�

log

log’

∑ (24)

Once again, this index can be normalized by dividing by log_2(n)

Q

+
 +

�

1

log

’’
(25)

It is important to note that the maximum value which H’ can take for a variable with a mean

of and values in a bounded interval is

�;�;�;

;

;
�;�;�;�

;

;
�;�;�;

 +
��

PD[

minmax

max
minmax

min
maxmin

’
loglog

(26)

It follows, therefore, that if the maximum, minimum and mean values of the variables are

known, it is possible to obtain a coefficient with values between 0 and 1, in the same way as we

obtained the bounded coefficient of variation. That is to say, by dividing the Theil index by this

maximum value. The result is known as the ERXQGHG�7KHLO�LQGH[.

’
’ ’

PD[

D

+

+
 +

(27.)

;
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Let us take now a real example which illustrates the advantages of using this proportion

instead of the (normalized) coefficient of entropy. This example uses data from the 1991 Census

to calculate the distribution of the number of children given birth by women over 15 in

Salamanca (see Table 5).

The average number of children per woman in Salamanca is 1.7. With this mean, a minimum

value equal to 0 and a maximum value equal to 8,3 the bounded Theil index is .44, which means

that given the characteristics of the distribution, the value of this coefficient is 44% of the

possible maximum value. If we had used the normalized Theil index, the result would have been

.02. A detailed analysis of the distribution suggests that we should opt for the first measure rather

than the second one.

Finally, we should mention another statistical formula, WKH�DYHUDJH�RI�UDWLRV�RI�DGYDQWDJH,

which is defined as the average of the ratios between quantity (qi) and population (pi) for every

                                                

3 The final row of the distribution of frequencies represents the case of 7 or more children. The value 8 would
be the mid point of this interval. A different value would have very little effect on the bounded Theil index. For
example, note that H’_max=2.09 if X_max=7, =2.27 if X_max=8, =2.42 if X_max=9, =2.55 if X_max=10, =2.67
if X_max=11, and that when X_max takes any of these values, PH only varies between .14 and .15.

7DEOH��� 'LVWULEXWLRQ�RI�QXPEHU�RI�FKLOGUHQ�DPRQJ�ZRPHQ�RYHU���

xi fi Mean 1,7
Bounded
Indexes

Salamanca 0 29497 Variance 3,6 34,3%
Mujeres >15 1 7861 St. Dev. 1,9 58,6%

2 14379 ARA 2,3 34,3%
3 8119 Theil 0,69 44,2%
4 4871 Gini 0,39 38,9%
5 2943 MD Gini 1,3 38,9%
6 1624 Entropy 1,7 14,9%
8 1624 Skewness 1,2

70917 Kurtosys 1,27
DM 0,81 30,6%

Source: INE.Sociodemografic Poll (1991). Elaborated by the author.
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sector (i) of the distribution. In other words, the average of ratios of advantage is simply the Theil

index without logarithms:

P

L �

Q

L

L

L

5  T
T

S
∑ (28)

This coefficient varies between 1 (when the variable is split equally among all the cases), and

n when the variable takes the same value in 100% of cases. For this reason, the normalized

coefficient of the average of ratios of advantage has been defined as:

P

1 P

5  
5 ��

Q ��
(29)

However, for the same reason discussed above with respect to the coefficient of variation,

it is not possible to consider this adjustment for those variables with values in a bounded interval

where the hypothesis of an unlimited value is meaningless. Hence, here we propose a different

measure derived from the maximum value for this coefficient, which depends on the maximum,

minimum and mean value of the distribution under consideration. This is

max

min max max min
P5  

� ; ; ��� ; ; � � � ; ; �

; (30)

Thus, we may calculate the proportion of the average of ratios of advantage as the ratio

P

P

5

5 max
(31)

As the minimum value which these two quantities may take is 1, it would be better to

subtract one from both the numerator and denominator, and  consider the ratio

D

P

P

50  
5 ��

5 ��
max

(32)

And, surprisingly, we find the following algebraic relationship:
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D D50  39 (33)

This means, for instance, in the last example, that the proportion of bounded variance was

34.3% and the proportion of average of ratios of advantage is also 34.3%.

$SSOLFDWLRQV

The utility and advantages of the coefficients proposed here can be illustrated by applying

them to two empirical examples.

The aim of the first example is to show how measures of inequality may often produce

contradictory results, and therefore how particular care must be taken in choosing the appropriate

measure if we wish to avoid misleading conclusions.

Table 6 has been obtained from the socio-demographic poll (1991), whose sample size

allows us to perform a study of inequality in education by cohorts without sample errors. It is

important to note that careful attention must be paid to the possible problems for the

interpretation of the results resulting from differential mortality. The analysis of means shows

a quite considerable increase in the number of years of schooling amongst Spaniards in the cohort

aged over 75 years and the cohort of those aged between 25 and 29 years: from three and a half

years to slightly over nine years. The increase is greater for women -from 3.1 to 9.5 years- than

for men -from 3.5 to 8.9 years. In other words, in those cohorts born before 1956 men had more

years of schooling than women, and this situation was reversed among younger cohorts.
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We can see that the standard deviation systematically increases, except in the case of the

cohort aged 25 to 29. This group may include people still registered as students, either

undergraduate or postgraduate, and therefore, we expect an increase in both its mean and

standard deviation. This constant increase in the standard deviation is mainly due to the increase

in the percentage of students at university, since if the mean rises above the mid point in a scale

(the scale here has limits of 0 and 20 years, so the mid point is equal to 10), then the standard

deviation also increases.

The coefficient of variation shows a dramatic decrease in the deviation in years of education

from 88.6% for the cohort aged 75 years or over to the (possibly undervalued) 37% for the cohort

aged 25 to 29 years. As the mean increases considerably more than the standard deviation, the

coefficient of variation decreases. However, can we affirm that inequality in education has

decreased as consistently and significantly as these figures suggest? Which statistic should be

believed: the standard deviation or the coefficient of variation? The answer to this second

question seems clear: it is better to use a relative coefficient than an absolute coefficient for

comparisons. However, it could also be argued that as one coefficient measures absolute

deviation and the other relative deviation, the decision to choose one or another depends on what

exactly we want to compare.

The bounded coefficient of variation proposed here produces different results. This statistic

shows a certain stability in inequality in education over the different cohorts. And it also shows

7DEOH��� <HDUV�LQ�VFKRRO�E\�&2+257�DQG�JHQGHU

TOTAL POPULATION MEN WOMEN

COHORT Mean St.D. CV CVb Mean St.D. CV CVb Mean St.D. CV CVb

1962-1966 (25 - 29) 9,2 3,4 37,0% 34,1% 8,9 3,3 37,1% 33,2% 9,5 3,6 37,9% 36,0%
1957-1961 (30 - 34) 8,0 4,2 52,2% 42,8% 8,0 4,1 51,3% 41,8% 8,1 4,3 53,1% 43,8%
1952-1956 (35 - 39) 7,1 4,2 59,2% 43,9% 7,3 4,2 57,5% 43,6% 6,9 4,2 60,9% 44,2%
1947-1951 (40 - 44) 6,4 4,0 62,5% 42,9% 6,5 4,1 63,1% 43,8% 6,2 3,8 61,3% 41,1%
1942-1946 (45 - 49) 5,8 3,9 67,2% 43,0% 6,1 4,1 67,2% 44,5% 5,5 3,7 67,3% 41,4%
1937-1941 (50 - 54) 4,9 3,6 73,5% 41,9% 5,2 3,7 71,2% 42,2% 4,6 3,3 71,7% 39,2%
1932-1936 (55 - 59) 4,5 3,5 77,8% 41,9% 4,8 3,6 75,0% 42,1% 4,2 3,3 78,6% 40,5%
1927-1931 (60 - 64) 4,2 3,2 76,2% 39,3% 4,4 3,4 77,3% 41,0% 4,0 3,0 75,0% 37,5%
1922-1926 (65 - 69) 4,1 3,2 78,0% 39,6% 4,3 3,3 76,7% 40,2% 3,9 3,0 76,9% 37,9%
1917-1921 (70 - 74) 3,9 3,1 79,5% 39,1% 4,3 3,3 76,7% 40,2% 3,5 2,9 82,9% 38,2%
BEF. 1916 (75 AND OVER) 3,5 3,1 88,6% 40,8% 3,9 3,2 82,1% 40,4% 3,1 2,8 90,3% 38,7%
Source: INE.Sociodemografic Poll (1991). Elaborated by the author.
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that if we abstract the mean of years of schooling from the analysis, this inequality does not

decrease during the early years of the francoist dictatorship (1939-1975) but actually increased

with respect to previous generations.

The bounded coefficient of variation can also be used to compare men and women: for those

cohorts born before 1952, the variation in years of schooling is greater for men than for women.

As most women left school at an early age, inequality is low for this group. Only with the

incipient incorporation of upper middle-class women into middle and high levels of education

in the 1960s does inequality among women begin to overtake that among men.

It could be argued that the fact that the bounded coefficient of variation does not vary among

the different cohorts reveals that it is not very sensitive to deviation and, therefore, that it is not

a very useful measure of deviation. I now wish to demonstrate that this is not the case, by

considering a cross section of time series data for the same variable, as compiled by Mas, Pérez,

Uriel and Serrano (1995) (see Table 7).
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The Table gives the mean, standard deviation, the bounded coefficient of variation and the

classical Pearson coefficient for the whole population for each year. In this case, one obviously

expects to find that deviation in years of schooling will increase as the new generations spend

on average much longer in education than the mean. The bounded coefficient increases in a

monotonic form from 31% to 41% over the 29 years considered in the analysis, and this increase

is always less than one percentage point. In contrast, the classic Pearson coefficient does not

follow a regular pattern.

Year Mean St. D. CVb CV
1964 4,9 2,7 31% 55%
1965 4,9 2,7 32% 55%
1966 4,9 2,7 32% 55%
1967 5,0 2,7 32% 55%
1968 5,0 2,8 32% 55%
1969 5,1 2,8 32% 55%
1970 5,2 2,9 33% 56%
1971 5,3 3,0 34% 56%
1972 5,4 3,0 34% 57%
1973 5,5 3,1 35% 57%
1974 5,6 3,2 35% 57%
1975 5,6 3,2 36% 57%
1976 5,8 3,3 36% 57%
1977 5,8 3,3 36% 57%
1978 5,9 3,3 37% 57%
1979 5,9 3,3 37% 56%
1980 6,0 3,4 37% 57%
1981 6,1 3,5 38% 57%
1982 6,2 3,5 38% 56%
1983 6,4 3,6 39% 56%
1984 6,5 3,6 39% 56%
1985 6,6 3,7 39% 56%
1986 6,7 3,7 39% 55%
1987 6,8 3,7 40% 55%
1988 6,9 3,8 40% 55%
1989 7,1 3,9 40% 55%
1990 7,2 3,9 40% 54%
1991 7,2 3,9 40% 54%
1992 7,3 3,9 41% 53%

Source: Mas, Pérez, Uriel y Serrano (1995)

7DEOH���� <HDUV�LQ�6FKRRO�
6SDLQ�����������
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In this context it is interesting to analyze the data published by Ram (1990) in 7KH�5HYLHZ

RI�(FRQRPLFV�DQG�6WDWLVWLFV in 1990. In this paper he studies the empirical relationship between

the means and standard deviations of years of schooling in 94 countries (see Figure 4). Since

Ram uses a quadratic regression equation and the standard deviation for variables with values

in a bounded interval decreases when the mean is between the limits of the distribution, his data

may lead to misleading conclusions. Thus, to say that in developing countries an increase in the

average level of education implies an increase in inequality in education is not strictly accurate.

In fact, although there is an initial increase in inequality, as soon as the average years of

schooling exceeds the mid point in the scale, there will be a decrease in inequality.

Moreover, the results would be different in terms of relative deviation. If we plot the

coefficients of variation for the same countries in the same graph, it can be seen that (relative)

inequality dramatically decreases inversely with respect to the mean. If instead we plot the

bounded coefficients of variation (Figure 4), inequality in education now increases with the mean
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following a tenuous inverse linear relationship that is not so clear at the beginning because of the

upward bias of the coefficient of variation when the mean is close to zero.

The second example is taken from 29 studies carried out by the Spanish Center of

Sociological Research (CIS). In these polls individuals were asked about their ideology. The

measurement scales used a range from 1 to 7 in the first 15 studies (until June 1982) and from

1 to 10 in the last 14 studies. We wish to analyze the effect of these scales on the mean and

coefficients of variation. Figure 5 shows the evolution of the mean. The thick line represents

ideology measured before July 1983 on the 7-point scale. The thin line depicts the ideology

measured after this date on the 10-point scale. The dotted line is the mean obtained  before July

1983 with the 7-point scale4.

                                                

4 To do so, we have performed a linear transformation with parameters a=-0.5, b=1.5, so that both distributions
have the same limits.
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As was to be expected, there is a fictitious gap between the thin and thick lines due to the

artificial change in the measurement scale. However, when the dotted line is compared to the thin

one, we can see a slight decline to below the mean. This can be explained in two ways: firstly,

by arguing that under the socialist government a large proportion of the population identified

with the left; or, secondly, and more plausibly, that the 10-point scale confuses the Center (5) and

Center-left as it is impossible to identify with the ideological position represented by that

corresponding to the actual mid point on the scale (5.5).

The main question here is to analyze the dispersion of the distribution. Our initial hypothesis

is that neither the change in the political situation, nor the change in the measurement scale,

should have any effect on the ideological polarization in the population. Figure 6 compares both

coefficients of variation. The Pearson coefficient of variation is very sensitive to the change in

the scale used; thus, it ranges in the [.3,.4] interval until 1982 and in the [.5,.7] interval after

1983. In contrast, the bounded coefficient of variation remains in the [.3,.4] range in both periods.

Both coefficients follow a similar pattern in the second period, with wider variations for the

Pearson coefficient. The difference between both periods raises suspicions with respect to the
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coefficient of variation. The bounded coefficient of variation, on the contrary, seems to be more

reliable when comparing distributions with different measurement scales.

In short, the paper began by highlighting the importance of the study of inequality in

sociology. Its aim was to identify a family of relative measures of dispersion of use for comparing

diversity over time and space. Beginning with the variance, a number of widely used statistics

—the Gini coefficient, the Theil index and the average of ratios of advantage- were discussed,

and their limit values calculated. They were then used as a denominator to obtain an adjusted

measure with limits between 0 and 1, unlike most relative coefficients of dispersion in the

statistical literature.

The idea, that can be generalized to a series of important statistics for the study of deviation,

inequality and polarization, is robust in the sense that when applied to two different statistics it

yields the same result. Two examples - inequality in education and polarization in ideology- have

illustrated the practical advantages of using these coefficients. Further research is nonetheless

required. This should focus in particular on the calculation of the standard error of these statistics

and on the analysis of their welfare functions; as Atkinson (1970) has stated, all measures of

inequality implicitly embrace a conception of justice.
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